满分5 > 高中数学试题 >

已知椭圆C的方程为:,其焦点在x轴上,离心率. (1)求该椭圆的标准方程; (2...

已知椭圆C的方程为:manfen5.com 满分网,其焦点在x轴上,离心率manfen5.com 满分网
(1)求该椭圆的标准方程;
(2)设动点P(x,y)满足manfen5.com 满分网,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为manfen5.com 满分网,求证:manfen5.com 满分网为定值.
(3)在(2)的条件下,问:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,给出证明;若不存在,请说明理由.
(1)根据椭圆焦点在x轴上,离心率,即可求出椭圆的标准方程; (2)假设M,N的坐标,利用向量条件寻找坐标之间的关系,结合点M,N在椭圆上,即可证明为定值; (3)由(2)知点P是椭圆上的点,根据椭圆的定义可得该椭圆的左右焦点满足|PA|+|PB|为定值. (1)【解析】 由,b2=2,解得,故椭圆的标准方程为. (2)证明:设M(x1,y1),N(x2,y2),则由,得(x,y)=(x1,y1)+2(x2,y2), 即x=x1+2x2,y=y1+2y2, ∵点M,N在椭圆上, ∴ 设kOM,kON分别为直线OM,ON的斜率,由题意知,, ∴x1x2+2y1y2=0, 故 =, 即(定值) (3)证明:由(2)知点P是椭圆上的点, ∵, ∴该椭圆的左右焦点满足为定值, 因此存在两个定点A,B,使得|PA|+|PB|为定值.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,manfen5.com 满分网,F是BC的中点.
(Ⅰ)求证:DA⊥平面PAC;
(Ⅱ)试在线段PD上确定一点G,使CG∥平面PAF,并求三棱锥A-CDG的体积.
查看答案
某校为了解学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:
分组频数频率
(3.9,4.2]30.06
(4.2,4.5]60.12
(4.5,4.8]25x
(4.8,5.1]yz
(5.1,5.4]20.04
合计n1.00
(I)求频率分布表中未知量n,x,y,z的值;
(II)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.
查看答案
衡阳市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的2×2列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为manfen5.com 满分网
优秀非优秀合计
甲班10
乙班30
合计110
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.
参考公式与临界值表:manfen5.com 满分网
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案
已知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.
(I)求数列{an}的通项公式;
(II)设Tn为数列{manfen5.com 满分网}的前n项和,若Tn≤λan+1对∀n∈N*恒成立,求实数λ的最小值.
查看答案
已知函数f(x)=manfen5.com 满分网sin2x-cos2x-manfen5.com 满分网,x∈R.
(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A,B,C的对边分别为a,b,c且c=manfen5.com 满分网,f(C)=0,若sinB=2sinA,求a,b的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.