已知直线l:
(t为参数),曲线C
1:
(θ为参数).
(Ⅰ)设l与C
1相交于A,B两点,求|AB|;
(Ⅱ)若把曲线C
1上各点的横坐标压缩为原来的
倍,纵坐标压缩为原来的
倍,得到曲线C
2,设点P是曲线C
2上的一个动点,求它到直线l的距离的最小值.
考点分析:
相关试题推荐
如图,⊙O
1与⊙O
2相交于A、B两点,过点A作⊙O
1的切线交⊙O
2于点C,过点B作两圆的割线,分别交⊙O
1、⊙O
2于点D、E,DE与AC相交于点P.
(1)求证:AD∥EC;
(2)若AD是⊙O
2的切线,且PA=6,PC=2,BD=9,求AD的长.
查看答案
已知函数
,g(x)=alnx+a.
(1)a=1时,求F(x)=f(x)-g(x)的单调区间;
(2)若x>1时,函数y=f(x)的图象总在函数y=g(x)的图象的上方,求实数a的取值范围.
查看答案
已知f(x)=xlnx,g(x)=-x
2+ax-3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(3)证明:对一切x∈(0,+∞),都有
成立.
查看答案
本题主要考查抛物线的标准方程、简单的几何性质等基础知识,考查运算求解、推理论证的能力.
如图,在平面直角坐标系xOy,抛物线的顶点在原点,焦点为F(1,0).过抛物线在x轴上方的不同两点A、B,作抛物线的切线AC、BD,与x轴分别交于C、D两点,且AC与BD交于点M,直线AD与直线BC交于点N.
(1)求抛物线的标准方程;
(2)求证:MN⊥x轴;
(3)若直线MN与x轴的交点恰为F(1,0),求证:直线AB过定点.
查看答案
已知椭圆C的方程为:
,其焦点在x轴上,离心率
.
(1)求该椭圆的标准方程;
(2)设动点P(x
,y
)满足
,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为
,求证:
为定值.
(3)在(2)的条件下,问:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,给出证明;若不存在,请说明理由.
查看答案