满分5 > 高中数学试题 >

如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,...

如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
manfen5.com 满分网
(Ⅰ)证明:AD⊥平面PBC;
(Ⅱ)求三棱锥D-ABC的体积;
(Ⅲ)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
(Ⅰ)证明AD垂直平面PBC内的两条相交直线PC、BC,即可证明AD⊥平面PBC; (Ⅱ)求出三棱锥的底面ABC的面积,求出高BC,再求三棱锥D-ABC的体积; (Ⅲ)取AB的中点O,连接CO并延长至Q,使得CQ=2CO,点Q即为所求,证明PQ平行平面ABD内的直线OD,即可证明PQ∥平面ABD,在直角△PAQ中,求此时PQ的长. 【解析】 (Ⅰ)因为PA⊥平面ABC,所以PA⊥BC, 又AC⊥BC,所以BC⊥平面PAC,(2分) 所以BC⊥AD.(3分) 由三视图可得,在△PAC中,PA=AC=4,D为PC中点,所以AD⊥PC,(4分) 所以AD⊥平面PBC,(5分) (Ⅱ)由三视图可得BC=4, 由(Ⅰ)知∠ADC=90°,BC⊥平面PAC, 又三棱锥D-ABC的体积即为三棱锥B-ADC的体积,(7分) 所以,所求三棱锥的体积.(9分) (Ⅲ)取AB的中点O,连接CO并延长至Q,使得CQ=2CO,点Q即为所求.(10分) 因为O为CQ中点,所以PQ∥OD, 因为PQ⊄平面ABD,OD⊂平面ABD, 所以PQ∥平面ABD,(12分) 连接AQ,BQ,四边形ACBQ的对角线互相平分, 所以ACBQ为平行四边形, 所以AQ=4,又PA⊥平面ABC, 所以在直角△PAQ中,.(14分)
复制答案
考点分析:
相关试题推荐
某班级共有60名学生.先用抽签法从中抽取部分学生调查他们的学习情况,若每名学生被抽到的概率为manfen5.com 满分网
(I)求从中抽取的学生数,
(Ⅱ)若抽查结果如下表
每周学习时间(小时)[0,10][10,20)[20,30)[30,40)
人数24x1
先确定x,再完成频率分布直方图;
(III)估计该班学生每周学习时间的平均数(同一组中的数据用该组区间的中点值作代表)

manfen5.com 满分网 查看答案
已知函数f(x)=Asin(ωx+φ)(其中A>0,manfen5.com 满分网)的图象如图所示.
(Ⅰ)求A,w及φ的值;
(Ⅱ)若tana=2,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
(1)已知点A是曲线ρ=2sinθ上任意一点,则点A到直线manfen5.com 满分网的距离的最小值是   
(2)已知2x+y=1,x>0,y>0,则manfen5.com 满分网的最小值是   
(3)如图,△ABC内接于⊙O,AB=AC,直线MN切⊙O于点C,BE∥MN交AC于点E.若AB=6,BC=4,则AE的长为   
manfen5.com 满分网 查看答案
斜率为2的直线l过双曲线manfen5.com 满分网的右焦点且与双曲线的左右两支分别相交,则双曲线的离心率e的取值范围    查看答案
某程序图如图所示,该程序运行后输出的结果是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.