如图,设F是椭圆
的左焦点,直线l为对应的准线,直线l与x轴交于P点,线段MN为椭圆的长轴,已知|MN|=8,且|PM|=2|MF|.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求证:对于任意的割线PAB,恒有∠AFM=∠BFN;
(Ⅲ)求三角形△ABF面积的最大值.
考点分析:
相关试题推荐
如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.
(1)证明:EM⊥BF;
(2)求平面BEF与平面ABC所成的锐二面角的余弦值.
查看答案
某项计算机考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试,已知每个科目只允许有一次补考机会,两个科目均合格方快获得证书,现某人参加这项考试,科目A每次考试成绩合格的概率为
,科目B每次考试合格的概率为
,假设各次考试合格与否均互不影响.
(Ⅰ)求他不需要补考就可获得证书的概率;
(Ⅱ)在这次考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ζ,求随即变量ζ的分布列和数学期望.
查看答案
已知数列{a
n}的前n项和S
n=2a
n-3•2
n+4,n=1,2,3,….
(Ⅰ)求数列{a
n}的通项公式;
(Ⅱ)设T
n为数列{S
n-4}的前n项和,求T
n.
查看答案
已知
,设函数
.
(Ⅰ)当
,求函数f(x)的值域;
(Ⅱ)当
时,若f(x)=8,求函数
的值.
查看答案
选做题(在(1)(2)中任选一题,若两题都做按第(1)题计分)
(1)如图,点P在圆O直径AB的延长线上,且PB=OB=2,PC切圆O于点C,CD⊥AB于点D,则CD=
.
(2)在直角坐标系中,参数方程为
的直线l,被以原点为极点、x轴的正半轴为极轴、极坐标方程为ρ=2cosθ的曲线C所截,则得的弦长是
.
查看答案