(1)连接AC,利用三角形中位线的性质,证明EF∥PA,利用线面平行的判定,可得EF∥平面PAD;
(2)面面垂直的性质,证明CD⊥平面PAD,进而可证平面PAD⊥平面PDC;
(3)先计算P-ADC的体积,再计算求四棱锥P-ABCD的体积VP-ABCD.
(1)证明:连接AC,则F是AC的中点,在△CPA中,EF∥PA,…(2分)
∵PA⊂平面PAD,EF⊄平面PAD,
∴EF∥平面PAD …(4分)
(2)证明:因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
又CD⊥AD,所以CD⊥平面PAD,…(7分)
又CD⊂平面PDC,∴平面PAD⊥平面PDC.…(8分)
(3)【解析】
∵,∴PA2+PD2=AD2,
∴,…(10分)
又由(2)可知CD⊥平面PAD,CD=2,…(11分)
∴,…(13分)
∴.…(14分)