满分5 > 高中数学试题 >

已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率...

已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线manfen5.com 满分网的焦点,离心率为manfen5.com 满分网
(1)求椭圆C的标准方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若manfen5.com 满分网manfen5.com 满分网,求证:λ12=-10.
(1)设出椭圆的方程,把抛物线方程整理成标准方程,求得焦点的坐标,进而求得椭圆的一个顶点,即b,利用离心率求得a和c关系进而求得a,则椭圆的方程可得. (2)先根据椭圆的方程求得右焦点,设出A,B,M的坐标设出直线l的方程代入椭圆方程整理后利用韦达定理表示出x1+x2和x1x2,进而根据,,和利用题设条件求得λ1和λ2的表达式,进而求得λ1+λ2. 【解析】 (1)【解析】 设椭圆C的方程为(a>b>0), 抛物线方程化为x2=4y,其焦点为(0,1) 则椭圆C的一个顶点为(0,1),即b=1 由,∴a2=5, 所以椭圆C的标准方程为 (2)证明:易求出椭圆C的右焦点F(2,0), 设A(x1,y1),B(x2,y2),M(0,y),显然直线l的斜率存在, 设直线l的方程为y=k(x-2),代入方程并整理, 得(1+5k2)x2-20k2x+20k2-5=0 ∴, 又,,, ,,而,, 即(x1-0,y1-y)=λ1(2-x1,-y1),(x2-0,y2-y)=λ2(2-x2,-y2) ∴,, 所以
复制答案
考点分析:
相关试题推荐
已知f(x)=ax3+3x2-x+1,a∈R.
(Ⅰ)当a=-3时,求证:f(x)=在R上是减函数;
(Ⅱ)如果对∀x∈R不等式f′(x)≤4x恒成立,求实数a的取值范围.
查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且PA=PD=manfen5.com 满分网AD,若E、F分别为PC、BD的中点.
(1)求证:EF∥平面PAD;
(2)求证:平面PDC⊥平面PAD.
(3)求四棱锥P-ABCD的体积VP-ABCD
查看答案
设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,求q的值.
查看答案
已知manfen5.com 满分网,设manfen5.com 满分网
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当manfen5.com 满分网manfen5.com 满分网时,求函数f(x)的最大值及最小值.
查看答案
在极坐标系中,点manfen5.com 满分网关于直线l:ρcosθ=1的对称点的一个极坐标为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.