满分5 > 高中数学试题 >

若α∈(0,),且sin2α+cos2α=,则tanα的值等于( ) A. B....

若α∈(0,manfen5.com 满分网),且sin2α+cos2α=manfen5.com 满分网,则tanα的值等于( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
把已知的等式中的cos2α,利用同角三角函数间的基本关系化简后,得到关于sinα的方程,根据α的度数,求出方程的解即可得到sinα的值,然后利用特殊角的三角函数值,由α的范围即可得到α的度数,利用α的度数求出tanα即可. 【解析】 由cos2α=1-2sin2α,得到sin2α+cos2α=1-sin2α=, 则sin2α=,又α∈(0,),所以sinα=, 则α=,所以tanα=tan=. 故选D
复制答案
考点分析:
相关试题推荐
函数y=manfen5.com 满分网的定义域为M,N={x|log2(x-1)<1},则如图所示阴影部分所表示的集合是( )
manfen5.com 满分网
A.{x|-2≤x<1}
B.{x|-2≤x≤2}
C.{x|1<x≤2}
D.{x|x<2}
查看答案
函数y=manfen5.com 满分网的图象关于x轴对称的图象大致是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
复数z=manfen5.com 满分网在复平面上对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案
已知椭圆manfen5.com 满分网的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形.
(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明:manfen5.com 满分网为定值.
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网,其中a>0,a,b∈R.
(1)当a,b满足什么条件时,f(x)取得极值?
(2)若f(x)在区间[1,2]上单调递增,试用a表示b的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.