满分5 > 高中数学试题 >

四棱锥A-BCDE的正视图和俯视图如下,其中正视图是等边三角形,俯视图是直角梯形...

四棱锥A-BCDE的正视图和俯视图如下,其中正视图是等边三角形,俯视图是直角梯形.
(I)若F为AC的中点,当点M在棱AD上移动时,是否总有BF丄CM,请说明理由.
(II)求三棱锥的高.

manfen5.com 满分网
(Ⅰ)总有BF丄CM.取BC的中点O,连接AO,由AO⊥平面BCDE,可得AO⊥CD,可证CD⊥面ABC,有CD⊥BF,根据F是AC的中点,可得BF⊥AC,从而可得BF⊥面ACD,进而可得BF丄CM; (Ⅱ)先计算VA-CDE==,设三棱锥C-ADE的高为h,再计算VC-ADE=,利用VA-CDEV=C-ADE,即可求得三棱锥C-ADE的高. 【解析】 (Ⅰ)总有BF丄CM.理由如下: 取BC的中点O,连接AO, 由俯视图可知,AO⊥平面BCDE,CD⊂平面BCDE, 所以AO⊥CD                …(2分) 又CD⊥BC,AO∩BC=O,所以CD⊥面ABC, 因为BF⊂面ABC, 故CD⊥BF. 因为F是AC的中点,所以BF⊥AC.…(4分) 又AC∩CD=D 故BF⊥面ACD, 因为CM⊂面ACD,所以BF丄CM.…(6分) (Ⅱ)由(Ⅰ)可知,AO⊥平面BCDE,, 又在正△ABC中,AO=, 所VA-CDE==,…(8分) 在直角△ABE中,AE=, 在直角梯形BCDE中,DE=, 在直角△ACD中,AD=2, 在△ADE中,S△ADE===,…(10分) 设三棱锥C-ADE的高为h,则VC-ADE=, 又VA-CDEV=C-ADE, 可得,解得h=. 所以,三棱锥C-ADE的高为.…(12分)
复制答案
考点分析:
相关试题推荐
如图,已知△ABC中,AB=manfen5.com 满分网,∠C=30°,AD=2DC,∠BDA=60°,求△ABC的面积.

manfen5.com 满分网 查看答案
已知点P在曲线y=ex(e为自然对数的底数)上,点Q在曲线y=lnx上,则丨PQ丨的最小值是    查看答案
天气预报说,在今后的三天中每一天下雨的概率均为40%,用随机模拟的方法进行试验,由1、2、3、4表示下雨,由5、6、7、8、9、0表示不下雨,利用计算器中的随机函数产生0〜9之间随机整数的20组如下:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
通过以上随机模拟的数据可知三天中恰有两天下雨的概率近似为    查看答案
各项均为正数的等比数列{an}的前n项和为Sn,a1=1,a2•a4=16则S4=    查看答案
抛物线的x2=16y焦点坐标为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.