满分5 > 高中数学试题 >

甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为.且他...

甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为manfen5.com 满分网.且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为manfen5.com 满分网
(Ⅰ)求甲乙二人中至少有一人破译出密码的概率;
(Ⅱ)求p的值;
(Ⅲ)设甲、乙、丙三人中破译出密码的人数为X,求X的分布列和数学期望EX.
(Ⅰ)记甲、乙、丙三人各自破译密码的事件为A1,A2,A3,且,A1,A2,A3相互独立,,甲乙二人中至少有一人破译出密码的概率. (Ⅱ)由三人中只有甲破译出密码的概率为.知,由此能求出p=. (Ⅲ)X的可能取值为0,1,2,3,p(X=0)=.p(X=1)=.p(X=2)=.p(X=3)=.由此能求出X的分布列和期望. 【解析】 记甲、乙、丙三人各自破译密码的事件为A1,A2,A3,且,A1,A2,A3相互独立, 则, (Ⅰ)甲乙二人中至少有一人破译出密码的概率 =1-(1-)(1-)=. (Ⅱ)∵三人中只有甲破译出密码的概率为. ∴, 解得p=. (Ⅲ)X的可能取值为0,1,2,3, p(X=0)=(1-)(1-)(1-=. p(X=1)=+=. p(X=2)=+=. p(X=3)=. ∴X的分布列是 X  0  1  2  3 P         EX==.
复制答案
考点分析:
相关试题推荐
如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的余弦值;
(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.

manfen5.com 满分网 查看答案
在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2-a2=bc.
(Ⅰ)求角A的大小;
(Ⅱ)设函数manfen5.com 满分网,当f(B)取最大值manfen5.com 满分网时,判断△ABC的形状;
(Ⅲ)求函数的最小正周期和最大值及最小值.
查看答案
设S为非空数集,若∀x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集.下列命题
①实数集是封闭集;
②全体虚数组成的集合是封闭集;
③封闭集一定是无限集;
④若S为封闭集,则一定有0∈S;
⑤若S,T为封闭集,且满足S⊆U⊆T,则集合U也是封闭集,
其中真命题是    查看答案
如图,在圆内接四边形ABCD中,对角线AC,BD相交于点E.已知manfen5.com 满分网,AE=2EC,∠CBD=30°,则∠CAB=    ,AC的长是   
manfen5.com 满分网 查看答案
manfen5.com 满分网manfen5.com 满分网,则a=    ;f(f(2))=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.