满分5 > 高中数学试题 >

设等比数列{an}的前n项和为Sn,已知 (I)求数列{an}的通项公式; (Ⅱ...

设等比数列{an}的前n项和为Sn,已知manfen5.com 满分网
(I)求数列{an}的通项公式;
(Ⅱ)在an与an+1之间插人n个数,使这n+2个数组成公差为dn的等差数列,求数列{manfen5.com 满分网}的前n项和Tn
(I)由可得an=2sn-1+2(n≥2),两式相减可得an+1=3an(n≥2),结合已知等比数列的条件可得a2=3a1,可求a1,从而可求通项 (II)等差数列的性质可知=,利用错位相减可求数列的和 【解析】 (I)由可得an=2sn-1+2(n≥2) 两式相减可得,an+1-an=2an 即an+1=3an(n≥2) 又∵a2=2a1+2,且数列{an}为等比数列 ∴a2=3a1 则2a1+2=3a1 ∴a1=2 ∴ (II)由(I)知,, ∵an+1=an+(n+1)dn ∴= = 两式相减可得,= = =
复制答案
考点分析:
相关试题推荐
学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(Ⅰ)求在1次游戏中,
(i)摸出3个白球的概率;
(ii)获奖的概率;
(Ⅱ)求在2次游戏中获奖次数X的分布列及数学期望E(X).
查看答案
已知manfen5.com 满分网(其中ω>0)的最小正周期为π.
(1)求f(x)的单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知manfen5.com 满分网,求角C.
查看答案
(考生注意:请在下面两题中任选一题作答,如果都做,则按所做第1题评分)
(1)(坐标系与参数方程选做题)
曲线C1manfen5.com 满分网(θ为参数)上的点到曲线C2manfen5.com 满分网上的点的最短距离为   
(2)(几何证明选讲选做题)
如图,已知:△ABC内接于圆O,点D在OC的延长线上,AD是圆O的切线,若∠B=30°,AC=1,则AD的长为   
manfen5.com 满分网 查看答案
从某地高中男生中随机抽取100名同学,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图).由图中数据可知体重的平均值为    kg;若要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取12人参加一项活动,再从这12人选两人当正、负队长,则这两人身高不在同一组内的概率为   
manfen5.com 满分网 查看答案
已知函数f(x)=ax2+(b+1)x+b-1,且a∈(0,3),则对于任意的b∈R,函数F(x)=f(x)-x总有两个不同的零点的概率是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.