满分5 > 高中数学试题 >

已知函数. (Ⅰ)若函数在区间(其中a>0)上存在极值,求实数a的取值范围; (...

已知函数manfen5.com 满分网
(Ⅰ)若函数在区间manfen5.com 满分网(其中a>0)上存在极值,求实数a的取值范围;
(Ⅱ)如果当x≥1时,不等式manfen5.com 满分网恒成立,求实数k的取值范围;
(Ⅲ)求证[(n+1)!]2>(n+1)•en-2(n∈N*).
(Ⅰ)求出函数的极值,在探讨函数在区间(其中a>0)上存在极值,寻找关于a的不等式,求出 实数a的取值范围; (Ⅱ)如果当x≥1时,不等式恒成立,把k分离出来,转化为求函数最值. (Ⅲ)借助于(Ⅱ)的结论证明不等式. 【解析】 (Ⅰ)因为,x>0,则, 当0<x<1时,f′(x)>0;当x>1时,f′(x)<0. 所以f(x)在(0,1)上单调递增;在(1,+∞)上单调递减, 所以函数f(x)在x=1处取得极大值. 因为函数f(x)在区间(其中a>0)上存在极值, 所以,解得. (Ⅱ)不等式, 即为,记, 所以, 令h(x)=x-lnx,则,∵x≥1,∴h′(x)≥0. ∴h(x)在[1,+∞)上单调递增,∴[h(x)]min=h(1)=1>0, 从而g′(x)>0 故g(x)在[1,+∞)上也单调递增, ∴[g(x)]min=g(1)=2,所以k≤2 (3)由(2)知:恒成立, 即, 令x=n(n+1),则, 所以, ,, . 叠加得:ln[1×22×32× = 则1×22×32×n2×(n+1)>en-2, 所以[(n+1)!]2>(n+1)•en-2(n∈N*)
复制答案
考点分析:
相关试题推荐
已知点manfen5.com 满分网在双曲线manfen5.com 满分网上,圆C:(x-a)2+(y-b)2=r2(a>0,b∈R,r>0)与双曲线M的一条渐近线相切于点(1,2),且圆C被x轴截得的弦长为4.
(Ⅰ)求双曲线M的方程;
(Ⅱ)求圆C的方程;
(Ⅲ)过圆C内一定点Q(s,t)(不同于点C)任作一条直线与圆C相交于点A、B,以A、B为切点分别作圆C的切线PA、PB,求证:点P在定直线l上,并求出直线l的方程.
查看答案
某工厂统计资料显示,一种产品次品率p与日产量x(x∈N*,80≤x≤100)件之间的关系如下表所示:

日产量x

80

81

82

x

98

99

100

次品率p
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网

P(x)

manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
其中P(x)=manfen5.com 满分网(a为常数).已知生产一件正品盈利k元,生产一件次品损失manfen5.com 满分网元(k为给定常数).
(1)求出a,并将该厂的日盈利额y(元)表示为日生产量x(件)的函数;
(2)为了获得最大盈利,该厂的日生产量应该定为多少件?
查看答案
manfen5.com 满分网如图,单位圆(半径为1的圆)的圆心O为坐标原点,单位圆与y轴的正半轴交与点A,与钝角α的终边OB交于点B(xB,yB),设∠BAO=β.
(1)用β表示α; 
(2)如果manfen5.com 满分网,求点B(xB,yB)的坐标;
(3)求xB-yB的最小值.
查看答案
在在四棱锥O-ABCD中,底面ABCD为菱形,OA⊥平面ABCD,E为OA的中点,F为BC的中点,求证:
(1)平面BDO⊥平面ACO;
(2)EF∥平面OCD.

manfen5.com 满分网 查看答案
已知函数f(x)=-xlnx+ax在(0,e)上是增函数,函数manfen5.com 满分网.当x∈[0,ln3]时,函数g(x)的最大值M与最小值m的差为manfen5.com 满分网,则a=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.