满分5 > 高中数学试题 >

如图,F1、F2分别为椭圆的焦点,椭圆的右准线l与x轴交于A点,若F1(-1,0...

如图,F1、F2分别为椭圆manfen5.com 满分网的焦点,椭圆的右准线l与x轴交于A点,若F1(-1,0),且manfen5.com 满分网
(Ⅰ)求椭圆的方程;
(Ⅱ)过F1、F2作互相垂直的两直线分别与椭圆交于P、Q、M、N四点,求四边形PMQN面积的取值范围.

manfen5.com 满分网
(I) 先确定A点坐标为(a2,0),利用,可得F2是AF1的中点,由此可求椭圆方程; (II)当直线MN与PQ中有一条与x轴垂直时,四边形PMQN面积;当直线PQ,MN均与x轴不垂直时,设直线PQ、MN的方程与椭圆方程联立,求得|PQ|,|MN|,表示出四边形PMQN面积,再换元,即可求得四边形PMQN面积的取值范围. 【解析】 (I) 由F1(-1,0)得c=1,∴A点坐标为(a2,0);…(2分) ∵,∴F2是AF1的中点,∴a2=3,b2=2 ∴椭圆方程为…(5分) (II)当直线MN与PQ中有一条与x轴垂直时,四边形PMQN面积;…(6分) 当直线PQ,MN均与x轴不垂直时,不妨设PQ:y=k(x+1)(k≠0), 联立代入消去y得(2+3k2)x2+6k2x+(3k2-6)=0 设P(x1,y1),Q(x2,y2)则…(8分) ∴,同理 ∴四边形PMQN面积…(10分) 令,则,则S是以u为变量的增函数 所以当k=±1,u=2时,,∴ 综上可知,,∴四边形PMQN面积的取值范围为…(13分)
复制答案
考点分析:
相关试题推荐
如图所示,四棱锥P-ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=manfen5.com 满分网,E为PD上一点,PE=2ED.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求二面角D-AC-E的余弦值;
(Ⅲ)在侧棱PC上是否存在一点F,使得BF∥平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.

manfen5.com 满分网 查看答案
某高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座.(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:
信息技术生物化学物理数学
周一manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
周三manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
周五manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
根据上表:
(1)求数学辅导讲座在周一、周三、周五都不满座的概率;
(2)设周三各辅导讲座满座的科目数为ξ,求随机变量ξ的分布列和数学期望.
查看答案
在△ABC中,角A、B、C所对的边分别为a、b、c,manfen5.com 满分网=(2a,1),manfen5.com 满分网=(2b-c,cosC)且manfen5.com 满分网manfen5.com 满分网
求:
(I)求sinA的值;
(II)求三角函数式manfen5.com 满分网的取值范围.
查看答案
(选修4-4:坐标系与参数方程)
已知直角坐标系xoy中,直线l的参数方程为manfen5.com 满分网.以直角坐标系xOy中的原点O为极点,x轴的非负半轴为极轴,圆C的极坐标方程为ρ2-4ρcosθ+3=0,则圆心C到直线l距离为    查看答案
如图,AB是半圆O的直径,点C在半圆上,CD⊥AB,垂足为D,且AD=5DB,设∠COD=θ,则tanθ的值为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.