选修4-4:坐标系与参数方程
在直角坐标系xoy中,圆C的参数方程为
以O为极点,x轴的非负半轴为极轴,并取相同的长度单位建立极坐标系,直线l的极坐标方程
.
(I)求圆心的极坐标.
(II)若圆C上点到直线l的最大距离为3,求r的值.
考点分析:
相关试题推荐
选修4-1:几何证明选讲
如图,直线AB经过圆上O的点C,并且OA=OB,CA=CB,圆O交于直线OB于E,D,连接EC,CD,若tan∠CED=
,圆O的半径为3,求OA的长.
查看答案
设函数f(x)=alnx-bx
2(x>0);
(1)若函数f(x)在x=1处与直线
相切
①求实数a,b的值;
②求函数
上的最大值.
(2)当b=0时,若不等式f(x)≥m+x对所有的
都成立,求实数m的取值范围.
查看答案
已知椭圆
右顶点与右焦点的距离为
,短轴长为
.
(I)求椭圆的方程;
(Ⅱ)过左焦点F的直线与椭圆分别交于A、B两点,若三角形OAB的面积为
,求直线AB的方程.
查看答案
某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1)和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有16人.
(I)试问在抽取的学生中,男、女生各有多少人?
(II)根据频率分布直方图,完成下列的2×2列联表,并判断能有多大(百分几)的把握认为“身高与性别有关”?
(Ⅲ)在上述80名学生中,从身高在170~175cm之间的学生按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.
查看答案
如图l,在正方形ABCD中,AB=2,E是AB边的中点,F是BC边上的一点,对角线AC分别交DE、DF于M、N两点.将ADAE,CDCF折起,使A、C重合于A点,构成如图2所示的几何体.
(I)求证:A′D⊥面A′EF;
(Ⅱ)试探究:在图1中,F在什么位置时,能使折起后的几何体中EF∥平面AMN,并给出证明.
查看答案