如果存在常数a使得数列{a
n}满足:若x是数列{a
n}中的一项,则a-x也是数列{a
n}中的一项,称数列{a
n}为“兑换数列”,常数a是它的“兑换系数”.
(1)若数列:1,2,4,m(m>4)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)已知有穷等差数列b
n的项数是n
(n
≥3),所有项之和是B,求证:数列b
n是“兑换数列”,并用n
和B表示它的“兑换系数”;
(3)对于一个不少于3项,且各项皆为正整数的递增数列{c
n},是否有可能它既是等比数列,又是“兑换数列”?给出你的结论并说明理由.
查看答案