满分5 > 高中数学试题 >

已知{an}为等差数列,若a1+a5+a9=π,则cos(a2+a8)的值为( ...

已知{an}为等差数列,若a1+a5+a9=π,则cos(a2+a8)的值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
先利用等差数列的性质求出a5=,进而有a2+a8=,再代入所求即可. 【解析】 因为{an}为等差数列,且a1+a5+a9=π,由等差数列的性质; 所以有a5=, 所以a2+a8=,故cos(a2+a8)=- 故选  A.
复制答案
考点分析:
相关试题推荐
若复数manfen5.com 满分网(a∈R,i为虚数单位位)是纯虚数,则实数a的值为( )
A.-2
B.4
C.-6
D.6
查看答案
设U={1,2,3,4},且M={x∈U|x2-5x+P=0},若∁UM={2,3},则实数P的值为( )
A.-4
B.4
C.-6
D.6
查看答案
对于数列An:a1,a2,…,an(ai∈N,i=1,2,…,n),定义“T变换”:T将数列An变换成数列Bn:b1,b2,…,bn,其中bi=|ai-ai+1|(i=1,2,…,n-1),且bn=|an-a1|,这种“T变换”记作Bn=T(An).继续对数列Bn进行“T变换”,得到数列Cn,…,依此类推,当得到的数列各项均为0时变换结束.
(Ⅰ)试问A3:4,2,8和A4:1,4,2,9经过不断的“T变换”能否结束?若能,请依次写出经过“T变换”得到的各数列;若不能,说明理由;
(Ⅱ)求A3:a1,a2,a3经过有限次“T变换”后能够结束的充要条件;
(Ⅲ)证明:A4:a1,a2,a3,a4一定能经过有限次“T变换”后结束.
查看答案
已知椭圆C:manfen5.com 满分网的离心率为manfen5.com 满分网,定点M(2,0),椭圆短轴的端点是B1,B2,且MB1⊥MB2
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点M且斜率不为0的直线交椭圆C于A,B两点.试问x轴上是否存在定点P,使PM平分∠APB?若存在,求出点P的坐标;若不存在,说明理由.
查看答案
已知函数manfen5.com 满分网,其中a≥-1.
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)的单调区间.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.