满分5 > 高中数学试题 >

已知的图象在点(1,f(1))处的切线斜率为2. (1)求a,b满足的关系式; ...

已知manfen5.com 满分网的图象在点(1,f(1))处的切线斜率为2.
(1)求a,b满足的关系式;
(2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围.
(1)先求导函数,根据的图象在点(1,f(1))处的切线斜率为2,可得a,b满足的关系式; (2)令,求导函数,确定函数的单调性,进而可求a的取值范围. 【解析】 (1), 根据题意的图象在点(1,f(1))处的切线斜率为2. ∴f′(1)=a-b=2 ∴b=a-2 (2)由(1)知,, 令 则g(1)=0, ①当0<a<1时,, 若,则g′(x)<0,g(x)在[1,+∞)减函数,所以g(x)<g(1)=0,即f(x)≥2lnx在[1,+∞)上恒不成立. ②a≥1时,,当x>1时,g′(x)>0,g(x)在[1,+∞)增函数,又g(1)=0,所以f(x)≥2lnx. 综上所述,所求a的取值范围是[1,+∞).
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,manfen5.com 满分网,以B、C为焦点的椭圆恰好过AC的中点P.
(1)求椭圆的标准方程;
(2)过椭圆的右顶点A1作直线l与圆E:(x-1)2+y2=2相交于M、N两点,试探究点M、N能将圆E分割成弧长比值为1:3的两段弧吗?若能,求出直线l的方程;若不能,请说明理由.

manfen5.com 满分网 查看答案
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4,G为PD中点,E点在AB上,平面PEC⊥平面PDC.
(Ⅰ)求证:AG⊥平面PCD;
(Ⅱ)求证:AG∥平面PEC;
(Ⅲ)求点G到平面PEC的距离.

manfen5.com 满分网 查看答案
有A、B、C、D、E五位工人参加技能竞赛培训,现分别从A、B二人在培训期间参加的若干次预赛成绩中随机抽取8次,用茎叶图表示这两种数据如下:
(Ⅰ)现要从A、B中选派一人参加技能竞赛,从平均状况和方差的角度考虑,你认为派哪位工人参加合适?请说明理由;
(Ⅱ)若从参加培训的5位工人中选2人参加技能竞赛,求A、B二人中至少有一人参加技能竞赛的概率.

manfen5.com 满分网 查看答案
已知等差数列{an}中,a1•a5=33,a2+a4=14,Sn为数列{an}的前n项和.
(1)求数列{an}的通项公式;
(2)若数列{an}的公差为正数,数列{bn}满足bn=manfen5.com 满分网,求数列{bn}的前n项和Tn
查看答案
对大于1的自然数m的三次幂可用奇数进行以下方式的“分裂”:manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网….仿此,若m3的“分裂数”中有一个是59,则m的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.