满分5 > 高中数学试题 >

已知抛物线C:y2=2px(p>0)的准线为l,焦点为F,⊙M的圆心在x轴的正半...

已知抛物线C:y2=2px(p>0)的准线为l,焦点为F,⊙M的圆心在x轴的正半轴上,且与y轴相切,过原点O作倾斜角为manfen5.com 满分网的直线n,交l于点A,交⊙M于另一点B,且AO=OB=2.
(1)求⊙M和抛物线C的方程;
(2)过l上的动点Q向⊙M作切线,切点为S,T,求证:直线ST恒过一个定点,并求该定点的坐标.

manfen5.com 满分网
(1)根据=OA•cos60°可求出p的值,从而求出抛物线方程,求出圆心和半径可求出⊙M的方程; (2)以点Q为圆心,QS为半径作⊙Q,则线段ST即为⊙Q与⊙M的公共弦,求出⊙Q的方程,可得ST的方程,从而可求定点坐标. (1)【解析】 因为=OA•cos60°=2×=1,即p=2,所以抛物线C的方程为y2=4x 设⊙M的半径为r,则r=,所以⊙M的方程为(x-2)2+y2=4; (2)证明:以点Q为圆心,QS为半径作⊙Q,则线段ST即为⊙Q与⊙M的公共弦 设点Q(-1,t),则QS2=QM2-4=t2+5, 所以⊙Q的方程为(x+1)2+(y-t)2=t2+5 从而直线ST的方程为3x-ty-2=0(*) 因为x=,y=0一定是方程(*)的解,所以直线ST恒过一个定点,且该定点坐标为(,0).
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ex-manfen5.com 满分网,(其中a∈R.无理数e=2.71828…)
(Ⅰ)若a=-manfen5.com 满分网时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当xmanfen5.com 满分网时,若关于x的不等式f(x)≥0恒成立,试求a的最大值.
查看答案
如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.
(1)求证:DC⊥平面ABC;
(2)设CD=a,求三棱锥A-BFE的体积.

manfen5.com 满分网 manfen5.com 满分网 查看答案
已知关x的一元二次函数f(x)=ax2-bx+1,设集合P={1,2,3}Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数a和b得到数对(a,b).
(1)列举出所有的数对(a,b)并求函数y=f(x)有零点的概率;
(2)求函数y=f(x)在区间[1,+∞)上是增函数的概率.
查看答案
已知函数f(x)=2+sin2x+cos2x,x∈R.
(1)求函数f(x)的最大值及取得最大值的自变量x的集合;
(2)求函数f(x)的单调增区间.
查看答案
在平面几何里,有:“若△ABC的三边长分别为a,b,c内切圆半径为r,则三角形面积为S△ABC=manfen5.com 满分网(a+b+c)r”,拓展到空间,类比上述结论,“若四面体A-ACD的四个面的面积分别为S1,S2,S3,S4内切球的半径为r,则四面体的体积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.