满分5 > 高中数学试题 >

已知定义域为(0,+∞)的函数f(x)满足: (1)对任意x∈(0,+∞),恒有...

已知定义域为(0,+∞)的函数f(x)满足:
(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;
(2)当x∈(1,2]时f(x)=2-x给出结论如下:
①任意m∈Z,有f(2m)=0;
②函数f(x)的值域为[0,+∞);
③存在n∈Z,使得f(2n+1)=9;
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k-1).
其中所有正确结论的序号是    
依据题中条件注意研究每个选项的正确性,连续利用题中第(1)个条件得到①正确; 连续利用题中第(2)个条件得到②正确; 利用反证法及2x变化如下:2,4,8,16,32,判断③命题错误; 据①②③的正确性可得④是正确的. 【解析】 ①f(2m)=f(2•2m-1)=2f(2m-1)=…=2m-1f(2),正确; ②取x∈(2m,2m+1),则∈(1,2];f()=2-,从而 f(x)=2f()=…=2mf()=2m+1-x,其中,m=0,1,2,… 从而f(x)∈[0,+∞),正确; ③f(2n+1)=2n+1-2n-1,假设存在n使f(2n+1)=9,即存在x1,x2,-=10,又,2x变化如下:2,4,8,16,32,显然不存在,所以该命题错误; ④根据前面的分析容易知道该选项正确; 综合有正确的序号是①②④.
复制答案
考点分析:
相关试题推荐
设等比数列{an}的前n项之和为Sn,已知a1=2011,且manfen5.com 满分网,则S2012=    查看答案
已知抛物线y2=4x的焦点为F,准线与x轴的交点为M,N为抛物线上的一点,则满足manfen5.com 满分网=    查看答案
已知函数f(x)=manfen5.com 满分网,则不等式f(x)≥1的解集为    查看答案
若直角坐标平面内A、B两点满足条件:①点A、B都在f(x)的图象上;②点A、B关于原点对称,则对称点对(A,B)是函数的一个“姊妹点对”(点对(A,B)与(B,A)可看作同一个“姊妹点对”).已知函数 f(x)=manfen5.com 满分网,则f(x)的“姊妹点对”有( )个.
A.1
B.2
C.3
D.4
查看答案
设抛物线M:y2=2px(p>0)的焦点F是双曲线manfen5.com 满分网右焦点.若M与N的公共弦AB恰好过F,则双曲线N的离心率e的值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.2
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.