满分5 > 高中数学试题 >

已知函数,(其中常数m>0) (1)当m=2时,求f(x)的极大值; (2)试讨...

已知函数manfen5.com 满分网,(其中常数m>0)
(1)当m=2时,求f(x)的极大值;
(2)试讨论f(x)在区间(0,1)上的单调性;
(3)当m∈[3,+∞)时,曲线y=f(x)上总存在相异两点P(x1,f(x1))、Q(x2,f(x2)),使得曲线y=f(x)在点P、Q处的切线互相平行,求x1+x2的取值范围.
(1)利用导数,我们可以确定函数的单调性,这样就可求f(x)的极大值; (2)求导数,再进行类讨论,利用导数的正负,确定函数的单调性; (3)曲线y=f(x)在点P、Q处的切线互相平行,意味着导数值相等,由此作为解题的突破口即可. 【解析】 (1)当m=2时, (x>0) 令f'(x)<0,可得或x>2;令f'(x)>0,可得, ∴f(x)在和(2,+∞)上单调递减,在单调递减              故 (2)(x>0,m>0) ①当0<m<1时,则,故x∈(0,m)∪时,f′(x)<0;x∈(m,)时,f'(x)>0 此时f(x)在(0,m),上单调递减,在(m,)单调递增;            ②当m=1时,则,故x∈(0,1),有恒成立, 此时f(x)在(0,1)上单调递减;                   ③当m>1时,则, 故∪(m,1)时,f'(x)<0;时,f'(x)>0 此时f(x)在,(m,1)上单调递减,在单调递增        (3)由题意,可得f′(x1)=f′(x2)(x1,x2>0,且x1≠x2) 即 ⇒ ∵x1≠x2,由不等式性质可得恒成立,又x1,x2,m>0 ∴⇒对m∈[3,+∞)恒成立       令,则对m∈[3,+∞)恒成立 ∴g(m)在[3,+∞)上单调递增,∴ 故 从而“对m∈[3,+∞)恒成立”等价于“” ∴x1+x2的取值范围为
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,短轴的一个端点到右焦点的距离为2,
(1)试求椭圆M的方程;
(2)若斜率为manfen5.com 满分网的直线l与椭圆M交于C、D两点,点manfen5.com 满分网为椭圆M上一点,记直线PC的斜率为k1,直线PD的斜率为k2,试问:k1+k2是否为定值?请证明你的结论.
查看答案
国家助学贷款是由财政贴息的信用贷款,旨在帮助高校家庭经济困难学生支付在校学习期间所需的学费、住宿费及生活费.每一年度申请总额不超过6000元.某大学2010届毕业生王某在本科期间共申请了24000元助学贷款,并承诺在毕业后3年内(按36个月计)全部还清.
签约的单位提供的工资标准为第一年内每月1500元,第13个月开始,每月工资比前一个月增加5%直到4000元.王某计划前12个月每个月还款额为500,第13个月开始,每月还款额比前一月多x元.
(Ⅰ)用x和n表示王某第n个月的还款额an
(Ⅱ)若王某恰好在第36个月(即毕业后三年)还清贷款,求x的值;
(Ⅱ)当x=40时,王某将在第几个月还清最后一笔贷款?他当月工资的余额是否能满足每月3000元的基本生活费?
(参考数据:1.0518=2.406,1.0519=2.526,1.0520=2.653,1.0521=2.786)
查看答案
如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD的边BC垂直于圆O所在的平面,且AB=2,AD=EF=1.
(Ⅰ)设FC的中点为M,求证:OM∥平面DAF;
(Ⅱ)求三棱锥F-ABC的体积VF-ABC

manfen5.com 满分网 查看答案
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球不喜爱打篮球合计
男生20525
女生101525
合计302050
(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女生的概率.
(3)为了研究喜欢打蓝球是否与性别有关,计算出K2≈8.333,你有多大的把握认为是否喜欢打蓝球与性别有关?下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案
在△ABC中,角A、B、C所对应的边分别为a、b、c,a=4.
(Ⅰ)若manfen5.com 满分网manfen5.com 满分网,求A的值;
(Ⅱ)若manfen5.com 满分网,求△ABC的面积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.