由三视图知,几何体是一个三棱柱,三棱柱的底面是边长为3的正三角形,侧棱长是2,根据三棱柱的两个底面的中心的中点与三棱柱的顶点的连线就是外接球的半径,求出半径即可求出球的表面积.
【解析】
由三视图知,几何体是一个三棱柱ABC-A1B1C1,
三棱柱的底面是边长为3的正三角形ABC,侧棱长是2,
三棱柱的两个底面的中心连接的线段MN的中点O与三棱柱的顶点A的连线AO就是外接球的半径,
∵△ABC是边长为3的等边三角形,MN=2,
∴AM=,OM=1,
∴这个球的半径r==2,
∴这个球的表面积S=4π×22=16π,
故答案为:16π.