满分5 > 高中数学试题 >

已知函数f(x)=ax2+bx(a≠0)的导函数f'(x)=-2x+7,数列{a...

已知函数f(x)=ax2+bx(a≠0)的导函数f'(x)=-2x+7,数列{an}的前n项和为Sn,点Pn(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(I)求数列{an}的通项公式及Sn的最大值;
(II)令manfen5.com 满分网,其中n∈N*,求{nbn}的前n项和.
(I)求出f(x)的导函数即可得到a与b的值,然后把Pn(n,Sn)代入到f(x)中得到Sn=-n2+7n,利用an=Sn-Sn-1得到通项公式,令an=-2n+8≥0得到n的范围即可求出Sn的最大值; (II)由题知,数列{bn}是首项为8,公比是的等比数列,表示出{nbn}的各项,利用错位相减法求出{nbn}的前n项和即可. 【解析】 (I)∵f(x)=ax2+bx(a≠0),∴f'(x)=2ax+b 由f'(x)=-2x+7得:a=-1,b=7,所以f(x)=-x2+7x 又因为点Pn(n,Sn)(n∈N*)均在函数y=f(x)的图象上,所以有Sn=-n2+7n 当n=1时,a1=S1=6 当n≥2时,an=Sn-Sn-1=-2n+8,∴an=-2n+8(n∈N*) 令an=-2n+8≥0得n≤4,∴当n=3或n=4时,Sn取得最大值12 综上,an=-2n+8(n∈N*),当n=3或n=4时,Sn取得最大值12 (II)由题意得 所以,即数列{bn}是首项为8,公比是的等比数列, 故{nbn}的前n项和Tn=1×23+2×22++n×2-n+4① ② 所以①-②得: ∴
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,已知平面BCC1B1是圆柱的轴截面(经过圆柱的轴的截面),BC是圆柱底面的直径,O为底面圆心,E为母线CC1的中点,已知AB=AC=AA1=4.
(Ⅰ)求证:B1O⊥平面AEO;
(Ⅱ)求二面角B1-AE-O的余弦值;
(Ⅲ)求三棱锥A-B1OE的体积.
查看答案
某市某房地产公司售楼部,对最近100位采用分期付款的购房者进行统计,统计结果如下表所示:
付款方式分1期分2期分3期分4期分5期
频数4020a10b
已知分3期付款的频率为0.2,售楼部销售一套某户型的住房,顾客分1期付款,其利润为10万元;分2期、3期付款其利润都为15万元;分4期、5期付款其利润都为20万元,用η表示销售一套该户型住房的利润.
(1)求上表中a,b的值;
(2)若以频率分为概率,求事件A:“购买该户型住房的3位顾客中,至多有1位采用分3期付款”的概率P(A);
(3)若以频率作为概率,求η的分布列及数学期望Eη.
查看答案
已知函数manfen5.com 满分网,x∈R.
(Ⅰ)求函数f(x)的最大值和最小值;
(Ⅱ)如图,函数f(x)在[-1,1]上的图象与x轴的交点从左到右分别为M、N,图象的最高点为P,求manfen5.com 满分网manfen5.com 满分网的夹角的余弦.

manfen5.com 满分网 查看答案
(1)在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为   
(2)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P,若manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网,则manfen5.com 满分网
的值为   
manfen5.com 满分网 查看答案
函数y=kx+b,其中k,b是常数,其图象是一条直线,称这个函数为线性函数,而对于非线性可导函数f(x),在已知点x附近一点x的函数值f(x)可以用下面方法求其近似代替值,f(x),利≈f(x)+f′(x)(x-x0)用这一方法,对于实数manfen5.com 满分网,取x的值为4,则m的近似代替值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.