满分5 > 高中数学试题 >

已知直线x-2y+2=0经过椭圆的左顶点A和上顶点D,椭圆C的右顶点为B,点S是...

已知直线x-2y+2=0经过椭圆manfen5.com 满分网的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AB,BS与直线manfen5.com 满分网分别交于M,N两点.
(1)求椭圆C的方程;
(2)求线段MN的长度的最小值.
(1)由已知得,椭圆C的左顶点为A(-2,0),上顶点为D(0,1,由此能求出椭圆C的方程. (2)设直线AS的方程为y=k(x+2),从而.由题设条件可以求出,所以, 再由均值不等式进行求解. 【解析】 (1)由已知得,椭圆C的左顶点为A(-2,0),上顶点为D(0,1), ∴a=2,b=1, 故椭圆C的方程为. (2)直线AS的斜率k显然存在,且k>0,故可设直线AS的方程为y=k(x+2),从而. 由得(1+4k2)x2+16k2x+16k2-4=0. 设S(x1,y1),则得,从而. 即,又B(2,0) 由得,∴, 故, 又k>0,∴=.当且仅当,即k=时等号成立 ∴k=时,线段MN的长度取最小值.
复制答案
考点分析:
相关试题推荐
如图,四棱锥P-ABCD的底面是边长为1的正方形,PA丄底面ABCD,AE丄PD于E,EF∥CD交PC于F,点M在AB上,且AM=EF.
(I)求证MF是异面直线AB与PC的公垂线;
(II)若PA=2AB,求二面角E-AB-D的正弦值.
(III)在(II)的条件下求点C到平面AMFE的距离.

manfen5.com 满分网 查看答案
已知数列{an}的前n项和Sn=2n2+2n,数列{bn}的前n项和Tn=2-bn
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)设cn=an2•bn,证明:当且仅当n≥3时,cn+1<cn
查看答案
袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球.
(I)试问:一共有多少种不同的结果?请列出所有可能的结果;
(II)若摸到红球时得2分,摸到黑球时得1分,设3次摸球所得总分为ξ,求ξ的数学期望Eξ.
查看答案
已知函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其图象经过点manfen5.com 满分网
(1)求f(x)的解析式;
(2)已知manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网,求f(α-β)的值.
查看答案
若对于定义在R上的函数f(x),其函数图象是连续不断,且存在常数λ(λ∈R),使得f(x+λ)+λf(x)=0对任意的实数x成立,则称f(x)是λ-伴随函数.有下列关于λ-伴随函数的结论:
①f(x)=0是常数函数中唯一一个λ-伴随函数;
②f(x)=x2是一个λ-伴随函数;
manfen5.com 满分网伴随函数至少有一个零点.
其中不正确    的结论的序号是    .(写出所有不正确结论的序号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.