满分5 > 高中数学试题 >

已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为的椭圆...

manfen5.com 满分网已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为manfen5.com 满分网的椭圆,其左焦点为F.若P是圆O上一点,连接PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆O相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
(1)因为,所以c=1,由此能得到椭圆C的标准方程. (2)因为P(1,1),所以,所以kOQ=-2,所以直线OQ的方程为y=-2x.再由椭圆的左准线方程为x=-2,能够证明直线PQ与圆O相切. (3)当点P在圆O上运动时,直线PQ与圆O保持相切.设P(x,y)(),则y2=2-x2, 所以,,所以直线OQ的方程为,由此知直线PQ始终与圆O相切. 【解析】 (1)因为,所以c=1(2分) 则b=1,即椭圆C的标准方程为(4分) (2)因为P(1,1),所以, 所以kOQ=-2,所以直线OQ的方程为y=-2x(6分) 又椭圆的左准线方程为x=-2,所以点Q(-2,4)(7分) 所以kPQ=-1,又kOP=1,所以kOP⊥kPQ=-1,即OP⊥PQ, 故直线PQ与圆O相切(9分) (3)当点P在圆O上运动时,直线PQ与圆O保持相切(10分) 证明:设P(x,y)(),则y2=2-x2, 所以,, 所以直线OQ的方程为(12分) 所以点Q(-2,)(13分) 所以, 又, 所以kOP⊥kPQ=-1,即OP⊥PQ,故直线PQ始终与圆O相切(15分)
复制答案
考点分析:
相关试题推荐
首项为a1,公差为d的等差数列{an}的前n项和为Sn.已知a7=-2,S5=30.
(1) 求a1及d;
(2) 若数列{bn}满足an=manfen5.com 满分网(n∈N*),求数列{bn}的通项公式.
查看答案
已知△ABC中,A,B,C的对边分别为a,b,c,且manfen5.com 满分网,b=1.
(1)若manfen5.com 满分网,求边c的大小;   
(2)求AC边上高的最大值.
查看答案
如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F为CE的中点.
( I)求证:求证AF⊥CD;
(II)求多面体ABCDE的体积.

manfen5.com 满分网 查看答案
manfen5.com 满分网某高校在2009年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
组号分组频数频率
第1组[160,165)50.050
第2组[165,170)0.350
第3组[170,175)30
第4组[175,180)200.200
第5组[180,185)100.100
合计1001.00
(1)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率?
查看答案
某新型企业随市场竞争加剧,为获取更大利润,企业须不断加大投资,若预计年利润率低于10%时,则该企业就考虑转型.下表显示的是某企业几年来年利润y(百万)与年投资成本x(百万)变化的一组数据.
年份2008200920102011
投资成本x35917
年利润y1234
请你就以下4个函数模型(1)y=kx+bk≠0(2)y=ax2+bx+ca≠0(3)y=abxa≠0,b>0,b≠1(4)y=loga(x+b)a>0,a≠1
其中以下说法
A、年投资成本与年利润正相关
B、选择其适合的函数模型是(2)y=ax2+bx+ca≠0
C、若要使企业利润超过6百万,则该企业考虑转型.
你认为正确的是    (把你认为正确的都填上) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.