满分5 > 高中数学试题 >

如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、...

manfen5.com 满分网如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED=manfen5.com 满分网,⊙O的半径为3,求OA的长.
(1)要想证AB是⊙O的切线,只要连接OC,求证∠ACO=90°即可; (2)先由三角形判定定理可知,△BCD∽△BEC,得BD与BC的比例关系,最后由切割线定理列出方程求出OA的长. 【解析】 (1)如图,连接OC, ∵OA=OB,CA=CB, ∴OC⊥AB. ∴AB是⊙O的切线; (2)∵BC是圆O切线,且BE是圆O割线, ∴BC2=BD•BE, ∵tan∠CED=,∴. ∵△BCD∽△BEC,∴, 设BD=x,BC=2x.又BC2=BD•BE,∴(2x)2=x•(x+6), 解得x1=0,x2=2,∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=3+2=5.(10分).
复制答案
考点分析:
相关试题推荐
巳知函数f(x)=x2-2ax-2alnx(x>0,a∈R,g(x)=ln2x+2a2+manfen5.com 满分网
(1) 证明:当a>0时,对于任意不相等的两个正实数x1、x2,均有manfen5.com 满分网>f(manfen5.com 满分网)成立;
(2) 记h(x)=manfen5.com 满分网
(i)若y=h′(x)在[1,+∞)上单调递增,求实数a的取值范围;
(ii)证明:h(x)≥manfen5.com 满分网
查看答案
已知椭圆C:manfen5.com 满分网,F1,F2分别为左,右焦点,离心率为manfen5.com 满分网,点A在椭圆C上,manfen5.com 满分网manfen5.com 满分网,过F2与坐标轴不垂直的直线l交椭圆于P,Q两点.
(1)求椭圆C的方程;
(2)在线段OF2上是否存在点M(m,0),使得以线段MP,MQ为邻边的四边形是菱形?若存在,求出实数m的取值范围;若不存在,说明理由.
查看答案
改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2010年十年间每年考入大学的人数.为方便计算,2001年编号为1,2002年编号为2,…,2010年编号为10.数据如下:
年份x12345678910
人数y35811131417223031
(1)从这10年中随机抽取两年,求考入大学人数至少有1年多于15人的概率;
(2)根据前5年的数据,利用最小二乘法求出y关于x的回归方程manfen5.com 满分网,并计算第8年的估计值和实际值之间的差的绝对值.
查看答案
已知三棱柱ABC-A1B1C1,底面三角形ABC为正三角形,侧棱AA1⊥底面ABC,AB=2,AA1=4,E为AA1的中点,F为BC中点.
(1)求证:直线AF∥平面BEC1
(2)求平面BEC1和平面ABC所成的锐二面角的余弦值.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(1)求函数f(x)的单调递增区间;
(2)已知△ABC中,角A,B,C所对的边长分别为a,b,c,若f(A)=0,manfen5.com 满分网,求△ABC的面积S.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.