(1)证明A1C⊥BM,只需证明线面垂直,即证A1C⊥面BPM;
(2)作PQ⊥A1A于Q,连接BQ,证明∠BQP为二面角B-A1A-C的平面角,再求正切值即可.
(1)证明:取AC中点P,则BP⊥AC
∵平面A1ACC1⊥平面ABC,平面A1ACC1∩平面ABC=AC,
∴BP⊥平面A1ACC1,
∵A1C⊂平面A1ACC1,∴A1C⊥BP
∵A1C⊥AC1,AC1∥PM
∴A1C⊥PM
∵BP∩PM=P
∴A1C⊥面BPM
∵BM⊂面BPM
∴A1C⊥BM;
(2)【解析】
作PQ⊥A1A于Q,连接BQ
∵BP⊥平面A1ACC1,∴A1A⊥BP
∵BP∩PQ=P,∴A1A⊥面BPQ
∵BQ⊂面BPQ,∴A1A⊥BQ
∴∠BQP为二面角B-A1A-C的平面角
斜三棱柱ABC-A1B1C1的底面为正三角形,侧面A1ACC1为菱形,∠A1AC=60°,设AC=2,则BP=,PQ=
∴tan∠BQP==2.