根据直线方程可知直线恒过定点,过A、B分别作AM⊥l于M,BN⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知|OB|=|AF|,由此求得点B的横坐标,则点B的坐标可得,最后利用直线上的两点求得直线的斜率.
【解析】
抛物线C:y2=4x的准线为l:x=-1,直线y=k(x+1)(k>0)恒过定点P(-1,0),
如图过A、B分别作AM⊥l于M,BN⊥l于N,
由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则|OB|=|AF|,
∴|OB|=|BF|,点B的横坐标为,
故点B的坐标为(,)
∵P(-1,0),
∴k==
故选B.