已知圆C
1的圆心在坐标原点O,且恰好与直线l
1:
相切.
(1)求圆的标准方程;
(2)设点A为圆上一动点,AN⊥x轴于N,若动点Q满足:
,(其中m为非零常数),试求动点Q的轨迹方程C
2;
(3)在(2)的结论下,当
时,得到曲线C,与l
1垂直的直线l与曲线C交于B、D两点,求△OBD面积的最大值.
考点分析:
相关试题推荐
户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,对本单位的50名员工进行了问卷调查,得到了如下列联表:
| 喜欢户外运动 | 不喜欢户外运动 | 合计 |
男性 | | 5 | |
女性 | 10 | | |
合计 | | | 50 |
已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是
.
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为喜欢户外运动与性别有关?并说明你的理由;
(Ⅲ)经进一步调查发现,在喜欢户外运动的10名女性员工中,有4人还喜欢瑜伽.若从喜欢户外运动的10位女性员工中任选3人,记ξ表示抽到喜欢瑜伽的人数,求ξ的分布列和数学期望.
下面的临界值表仅供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:
,其中n=a+b+c+d)
查看答案
如图,已知四棱锥P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,点M,N分别在PD,PC上,
,PM=MD.
(Ⅰ) 求证:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.
查看答案
在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且满足cos
=
,
•
=3,b+c=6
(I)求a的值;
(II)求
的值.
查看答案
设集合A={x|0≤x<1},B={x|≤x≤2},函数
,x
∈A且f[f(x
)]∈A,则x
的取值范围是
.
查看答案
已知双曲线的左右焦点是F
1,F
2,设P是双曲线右支上一点,
上的投影的大小恰好为
且它们的夹角为
,则双曲线的离心率e为
.
查看答案