满分5 > 高中数学试题 >

选修4-4:坐标系与参数方程选讲 在直角坐标系xOy中,直线l的参数方程为:(t...

选修4-4:坐标系与参数方程选讲
在直角坐标系xOy中,直线l的参数方程为:manfen5.com 满分网(t为参数),在以O为极点,以x 轴的正半轴为极轴的极坐标系中,圆C的极坐标方程为:manfen5.com 满分网
(Ⅰ)将直线l的参数方程化为普通方程,圆C的极坐标方程化为直角坐标方程;
(Ⅱ)判断直线l与圆C的位置关系.
(Ⅰ)将直线l的参数方程,①代入②消去参数,可得普通方程;圆C的极坐标方程,即ρ2=2ρsinθ+2ρcosθ,故可得直角坐标方程; (Ⅱ)求出圆心到直线的距离,可得直线l与圆C相交. 【解析】 (Ⅰ)将直线l的参数方程,①代入②消去参数,可得普通方程y-2x-1=0, 圆C的极坐标方程,即ρ2=2ρsinθ+2ρcosθ,∴直角坐标方程为x2+y2-2x-2y=0,即(x-1)2+(y-1)2=2; (Ⅱ)∵圆心到直线的距离为d==< ∴直线l与圆C相交.
复制答案
考点分析:
相关试题推荐
如图△ABC内接于圆O,AB=AC,直线MN切圆O于点C,BD∥MN,AC与BD相交于点E.
(1)求证:AE=AD;
(2)若AB=6,BC=4,求AE.

manfen5.com 满分网 查看答案
设函数manfen5.com 满分网
(Ⅰ) 当a=1时,求函数f(x)的极值;
(Ⅱ)当a>1时,讨论函数f(x)的单调性.
(Ⅲ)若对任意a∈(3,4)及任意x1,x2∈[1,2],恒有manfen5.com 满分网成立,求实数m的取值范围.
查看答案
已知圆C1的圆心在坐标原点O,且恰好与直线l1manfen5.com 满分网相切.
(1)求圆的标准方程;
(2)设点A为圆上一动点,AN⊥x轴于N,若动点Q满足:manfen5.com 满分网,(其中m为非零常数),试求动点Q的轨迹方程C2
(3)在(2)的结论下,当manfen5.com 满分网时,得到曲线C,与l1垂直的直线l与曲线C交于B、D两点,求△OBD面积的最大值.
查看答案
户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,对本单位的50名员工进行了问卷调查,得到了如下列联表:
喜欢户外运动不喜欢户外运动合计
男性5
女性10
合计50
已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是manfen5.com 满分网
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为喜欢户外运动与性别有关?并说明你的理由;
(Ⅲ)经进一步调查发现,在喜欢户外运动的10名女性员工中,有4人还喜欢瑜伽.若从喜欢户外运动的10位女性员工中任选3人,记ξ表示抽到喜欢瑜伽的人数,求ξ的分布列和数学期望.
下面的临界值表仅供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:manfen5.com 满分网,其中n=a+b+c+d)
查看答案
如图,已知四棱锥P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,点M,N分别在PD,PC上,manfen5.com 满分网,PM=MD.
(Ⅰ) 求证:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.