登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
已知函数.(a为常数,a>0) (Ⅰ)若是函数f(x)的一个极值点,求a的值; ...
已知函数
.(a为常数,a>0)
(Ⅰ)若
是函数f(x)的一个极值点,求a的值;
(Ⅱ)求证:当0<a≤2时,f(x)在
上是增函数;
(Ⅲ)若对任意的a∈(1,2),总存在
,使不等式f(x
)>m(1-a
2
)成立,求实数m的取值范围.
(Ⅰ)先求出其导函数:,利用是函数f(x)的一个极值点对应的结论f'()=0即可求a的值; (Ⅱ)利用:,在0<a≤2时,分析出因式中的每一项都大于等于0即可证明结论; (Ⅲ)先由(Ⅱ)知,f(x)在上的最大值为,把问题转化为对任意的a∈(1,2),不等式恒成立;然后再利用导函数研究不等式左边的最小值看是否符合要求即可求实数m的取值范围. 【解析】 由题得:. (Ⅰ)由已知,得且,∴a2-a-2=0,∵a>0,∴a=2.(2分) (Ⅱ)当0<a≤2时,∵,∴, ∴当时,.又, ∴f'(x)≥0,故f(x)在上是增函数.(5分) (Ⅲ)a∈(1,2)时,由(Ⅱ)知,f(x)在上的最大值为, 于是问题等价于:对任意的a∈(1,2),不等式恒成立. 记,(1<a<2) 则, 当m=0时,,∴g(a)在区间(1,2)上递减,此时,g(a)<g(1)=0, 由于a2-1>0,∴m≤0时不可能使g(a)>0恒成立, 故必有m>0,∴. 若,可知g(a)在区间上递减,在此区间上,有g(a)<g(1)=0,与g(a)>0恒成立矛盾,故, 这时,g'(a)>0,g(a)在(1,2)上递增,恒有g(a)>g(1)=0,满足题设要求, ∴,即, 所以,实数m的取值范围为.(14分)
复制答案
考点分析:
相关试题推荐
设数列{a
n
}为等比数列,数列{b
n
}满足b
n
=na
1
+(n-1)a
2
+…+2a
n-1
+a
n
,n∈N
*
,已知b
1
=m,
,其中m≠0.
(1)当m=1时,求b
n
;
(2)设S
n
为数列{a
n
}的前n项和,若对于任意的正整数n,都有S
n
∈[1,3],求实数m的取值范围.
查看答案
在直角坐标系xOy中,点M到F
1
、F
2
的距离之和是4,点M的轨迹C与x轴的负半轴交于点A,不过点A的直线l:y=kx+b与轨迹C交于不同的两点P和Q.
(1)求轨迹C的方程;
(2)当
时,求k与b的关系,并证明直线l过定点.
查看答案
某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:
(Ⅰ)求全班人数;
(Ⅱ)求分数在[80,90)之间的人数;并计算频率分布直方图中[80,90)间的矩形的高;
(Ⅲ)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.
查看答案
已知函数
.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的
,把所得到的图象再向左平移
单位,得到的函数y=g(x)的图象,求函数y=g(x)在区间
上的最小值.
查看答案
如图,已知直三棱柱ABC-A
1
B
1
C
1
,∠ACB=90°,AC=BC=2,AA
1
=4,E、F分别是棱CC
1
、AB中点.
(1)判断直线CF和平面AEB
1
的位置关系,并加以证明;
(2)求四棱锥A-ECBB
1
的体积.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.