满分5 > 高中数学试题 >

已知函数f(x)=x2+ax-lnx,a∈R. (1)若函数f(x)在[1,2]...

已知函数f(x)=x2+ax-lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(3)当x∈(0,e]时,证明:manfen5.com 满分网
(1)先对函数f(x)进行求导,根据函数f(x)在[1,2]上是减函数可得到其导函数在[1,2]上小于等于0应该恒成立,再结合二次函数的性质可求得a的范围. (2)先假设存在,然后对函数g(x)进行求导,再对a的值分情况讨论函数g(x)在(0,e]上的单调性和最小值取得,可知当a=e2能够保证当x∈(0,e]时g(x)有最小值3. (3)令F(x)=e2x-lnx结合(2)中知F(x)的最小值为3,再令并求导,再由导函数在0<x≤e大于等于0可判断出函数ϕ(x)在(0,e]上单调递增,从而可求得最大值也为3,即有成立,即成立. 【解析】 (1)在[1,2]上恒成立, 令h(x)=2x2+ax-1,有得, 得 (2)假设存在实数a,使g(x)=ax-lnx(x∈(0,e])有最小值3,= ①当a≤0时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae-1=35,(舍去), ②当时,g(x)在上单调递减,在上单调递增 ∴,a=e2,满足条件. ③当时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae-1=3,(舍去), 综上,存在实数a=e2,使得当x∈(0,e]时g(x)有最小值3. (3)令F(x)=e2x-lnx,由(2)知,F(x)min=3. 令,, 当0<x≤e时,ϕ'(x)≥0,φ(x)在(0,e]上单调递增 ∴ ∴,即>(x+1)lnx.
复制答案
考点分析:
相关试题推荐
设点P是曲线C:x2=2py(p>0)上的动点,点P到点(0,1)的距离和它到焦点F的距离之和的最小值为manfen5.com 满分网
(1)求曲线C的方程;
(2)若点P的横坐标为1,过P作斜率为k(k≠0)的直线交C于点Q,交x轴于点M,过点Q且与PQ垂直的直线与C交于另一点N,问是否存在实数k,使得直线MN与曲线C相切?若存在,求出k的值;若不存在,请说明理由.
查看答案
已知等差数列{an}的公差d大于0,且a2、a5是方程x2-12x+27=0的两根.数列{bn}的前n项和为Tn,满足Tn=2-bn(n∈N*).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,记cn=(Sn-λ)•bn(λ∈R,n∈N*).若c6为数列{cn}中的最大项,求实数λ的取值范围.
查看答案
某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为manfen5.com 满分网,第二、第三种产品受欢迎的概率分别为p,q(p>q),且不同种产品是否受欢迎相互独立.记ξ为公司向市场投放三种新型产品受欢迎的数量,其分布列为
ξ123
pmanfen5.com 满分网admanfen5.com 满分网
(1)求该公司至少有一种产品受欢迎的概率;
(2)求p,q的值;
(3)求数学期望Eξ.
查看答案
如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,manfen5.com 满分网,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求manfen5.com 满分网的值,若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网.   
(1)若f(α)=5,求tanα的值;
(2)设△ABC三内角A,B,C所对边分别为a,b,c,且manfen5.com 满分网,求f(x)在(0,B]上的值域.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.