满分5 > 高中数学试题 >

选做题: 如图,AB是半圆O的直径,C是圆周上一点(异于A、B),过C作圆O的切...

选做题:
如图,AB是半圆O的直径,C是圆周上一点(异于A、B),过C作圆O的切线l,过A作直线l的垂线AD,垂足为D,AD交半圆于点E.求证:CB=CE.

manfen5.com 满分网
若要证明CB=CE,即证明△BCE为等腰三角形,连接BE后,易利用圆周角定理的推论2,及已知结合弦切角定理判断出∠CEB=∠CBE,得到结论. 证明:如图所示,连接BE ∵AB为半圆O的直径, ∴∠AEB=90°,即BE⊥AD 又∵直线l⊥AD ∴BE∥l ∴∠DCE=∠CBE ∵直线l为圆O的切线 ∴∠CEB=∠DCE ∴∠CEB=∠CBE ∴CE=CB
复制答案
考点分析:
相关试题推荐
已知动圆C过点A(-2,0),且与圆M:(x-2)2+y2=64相内切
(1)求动圆C的圆心的轨迹方程;
(2)设直线l:y=kx+m(其中k,m∈Z)与(1)所求轨迹交于不同两点B,D,与双曲线manfen5.com 满分网交于不同两点E,F,问是否存在直线l,使得向量manfen5.com 满分网,若存在,指出这样的直线有多少条?若不存在,请说明理由.
查看答案
设函数manfen5.com 满分网(x∈R),其中m>0为常数
(1)当m=1时,曲线y=f(x)在点(1,f(1))处的切线斜率;
(2)求函数的单调区间与极值.
查看答案
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)判定AE与PD是否垂直,并说明理由.
(2)设AB=2,若H为PD上的动点,若△AHE面积的最小值为manfen5.com 满分网,求四棱锥P-ABCD的体积.

manfen5.com 满分网 查看答案
某水泥厂甲、乙两个车间包装水泥,在自动包装传送带上每隔30分钟抽取一包产品,称其重量,分别记录抽査数据如下:
甲:102,101,99,98,103,98,99
乙:110,115,90.85,75,115,110
(1)画出这两组数据的茎叶图:
(2>求出这两组数据的平均值和方差(用分数表示>:并说明哪个车间的产品较稳定.
(3)从甲中任取一个数据X (x≥100),从乙中任取一个数据y (y≤100),求满足条件|x-y|≤20的概率.
查看答案
已知数列{an}的前n项和为Sn,点(n,Sn)在函数f(x)=3x2-2x的图象上,
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网,Tn是数列{bn}的前n项和,求使manfen5.com 满分网成立的最小正整数n的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.