满分5 > 高中数学试题 >

选修4-5;不等式选讲. 设不等式|2x-1|<1的解集是M,a,b∈M. (I...

选修4-5;不等式选讲.
设不等式|2x-1|<1的解集是M,a,b∈M.
(I)试比较ab+1与a+b的大小;
(II)设max表示数集A的最大数.h=maxmanfen5.com 满分网,求证:h≥2.
(I)解绝对值不等式求出M=( 0,1),可得 0<a<1,0<b<1,再由(ab+1)-(a+b)=(a-1)(b-1)>0可得ab+1与a+b的大小. (II)由题意可得 h≥,h≥,h≥,可得 h3≥=≥8,从而证得 h≥2. 【解析】 (I)由不等式|2x-1|<1 可得-1<2x-1<1,解得 0<x<1,从而求得 M=( 0,1). 由 a,b∈M,可得 0<a<1,0<b<1. ∴(ab+1)-(a+b)=(a-1)(b-1)>0, ∴(ab+1)>(a+b). (II)设max表示数集A的最大数,∵h=max, ∴h≥,h≥,h≥, ∴h3≥=≥8,故 h≥2.
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xoy中,曲线C1的参数方程为 manfen5.com 满分网(a>b>0,ϕ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上,且经过极点的圆.已知曲线C1上的点M(1,manfen5.com 满分网)对应的参数φ=manfen5.com 满分网,曲线C2过点D(1,manfen5.com 满分网).
(I)求曲线C1,C2的直角坐标方程;
(II)若点A( ρ 1,θ ),B( ρ 2,θ+manfen5.com 满分网) 在曲线C1上,求manfen5.com 满分网的值.
查看答案
manfen5.com 满分网如图,A,B,C,D四点在同一圆上,BC与AD的延长线交于点E,点F在BA的延长线上.
(Ⅰ)若manfen5.com 满分网,求manfen5.com 满分网的值;
(Ⅱ)若EF2=FA•FB,证明:EF∥CD.
查看答案
已知函数f(x)=x3-ax2+10,
(I)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(II)在区间[1,2]内至少存在一个实数x,使得f(x)<0成立,求实数a的取值范围.
查看答案
设椭圆M:manfen5.com 满分网的离心率为manfen5.com 满分网,点A(a,0),B(0,-b),原点O到直线AB的距离为manfen5.com 满分网
(I)求椭圆M的方程;
(Ⅱ)设点C为(-a,0),点P在椭圆M上(与A、C均不重合),点E在直线PC上,若直线PA的方程为y=kx-4,且manfen5.com 满分网,试求直线BE的方程.
查看答案
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2,AB=1.
(Ⅰ)求四棱锥P-ABCD的体积V;
(Ⅱ)若F为PC的中点,求证:平面PAC⊥平面AEF.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.