(1)先证明BO⊥面PAC,可得BO⊥PA.由OE∥PC,PC⊥PA 可得OE⊥PA,从而证得PA⊥平面EBO.
(2)由线段长度间的关系可得 ,由 Q是△PAB的重心,可得,故有FG∥QO,进而证得FG∥平面EBO.
(1)证明:由题意可知,△PAC为等腰直角三角形,△ABC为等边三角形. 因为O为边AC的中点,所以BO⊥AC,
因为平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BO⊂平面ABC,所以,BO⊥面PAC.
因为PA⊂平面PAC,故 BO⊥PA.在等腰三角形PAC内,O,E为所在边的中点,故 OE∥PC,∴OE⊥PA,
又BO∩OE=O,所以,PA⊥平面EBO.
(2)证明:连AF交BE于Q,连QO.因为E、F、O分别为边PA、PB、PC的中点,
所以. 又 Q是△PAB的重心,
于是,,所以,FG∥QO.
因为FG⊄平面EBO,QO⊂平面EBO,所以,FG∥平面EBO.