满分5 > 高中数学试题 >

设动点P(x,y)(x≥0)到定点的距离比到y轴的距离大.记点P的轨迹为曲线C....

设动点P(x,y)(x≥0)到定点manfen5.com 满分网的距离比到y轴的距离大manfen5.com 满分网.记点P的轨迹为曲线C.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)设圆M过A(1,0),且圆心M在P的轨迹上,BD是圆M 在y轴的截得的弦,当M 运动时弦长BD是否为定值?说明理由;
(Ⅲ)过manfen5.com 满分网作互相垂直的两直线交曲线C于G、H、R、S,求四边形面GRHS的最小值.
(1)由动点P(x,y)(x≥0)到定点的距离比到y轴的距离大,知动点P(x,y)为以为焦点,直线为准线的抛物线,由此能求出点P的轨迹方程. (2)设圆心,半径,圆的方程为.由此能导出当M运动时弦长BD为定值. (3)设过F的直线方程为,G(x1,y1),H(x2,y2)由,得,由此能求出四边形GRHS的面积的最小值. 【解析】 (1))∵动点P(x,y)(x≥0)到定点的距离比到y轴的距离大, ∴动点P(x,y)为以为焦点,直线为准线的抛物线, ∴点P的轨迹方程为y2=2x. (2)设圆心,半径, 圆的方程为, 令x=0,得B(0,1+a),D(0,-1+a), ∴BD=2 故弦长BD为定值2. (3)设过F的直线方程为, G(x1,y1),H(x2,y2), 由,得, 由韦达定理得, 同理得RS=2+2k2, ∴四边形GRHS的面积. 故四边形面GRHS的最小值为8.
复制答案
考点分析:
相关试题推荐
如图,在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC⊥BC,E、F分别在线段B1C1和AC上,B1E=3EC1,AC=BC=CC1=4.
(Ⅰ)求证:BC⊥AC1
(Ⅱ)若F为线段AC的中点,求三棱锥A-C1EF的体积;
(Ⅲ)试探究满足EF∥平面A1ABB1的点F的位置,并给出证明.

manfen5.com 满分网 查看答案
某高中三年级有一个实验班和一个对比班,各有50名同学.根据这两个班市二模考    试的数学科目成绩(规定考试成绩在[120,150]内为优秀),统计结果如下:
实验班数学成绩的频数分布表:
分组[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140.150]
频数1212131291
对比班数学成绩的频数分布表:
分组[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140.150]
频数23131191011
(Ⅰ)分别求这两个班数学成绩的优秀率;若采用分层抽样从实验班中抽取15位同学的数学试卷,进行试卷分析,则从该班数学成绩为优秀的试卷中应抽取多少份?
(Ⅱ)统计学中常用M值作为衡量总体水平的一种指标,已知M与分数t的关系式为:manfen5.com 满分网,分别求这两个班学生数学成绩的M总值,并据此对这两个班数学成绩总体水平作一简单评价.
查看答案
已知等比数列{an}的前n项和Sn=2n+m(m∈R).
(Ⅰ)求m的值及{an}的通项公式;
(Ⅱ)设bn=2log2an-13,数列{bn}的前n项和为Tn,求使Tn最小时n的值.
查看答案
定义域为D的函数y=f(x),若存在常数a,b,使得对于任意x1,x2∈D,当x1+x2=2a时,总有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.已知函数f(x)=x3-3x2图象的对称中心的横坐标为1,则可求得:manfen5.com 满分网=    查看答案
定义一种运算S=a⊗b,在框图所表达的算法中揭示了这种运算“⊗”的含义.那么,按照运算“⊗”的含义,计算tan15°⊗tan30°+tan30°⊗tan15°=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.