满分5 > 高中数学试题 >

已知函数f(x)=2sinxcosx+2cos2x-1(x∈R) (Ⅰ)求函数f...

已知函数f(x)=2manfen5.com 满分网sinxcosx+2cos2x-1(x∈R)
(Ⅰ)求函数f(x)的最小正周期及在区间[0,manfen5.com 满分网]上的最大值和最小值;
(Ⅱ)若f(x)=manfen5.com 满分网,x∈[manfen5.com 满分网manfen5.com 满分网],求cos2x的值.
先将原函数化简为y=Asin(ωx+φ)+b的形式 (1)根据周期等于2π除以ω可得答案,又根据函数图象和性质可得在区间[0,]上的最值. (2)将x代入化简后的函数解析式可得到sin(2x+)=,再根据x的范围可求出cos(2x+)的值, 最后由cos2x=cos(2x+)可得答案. 【解析】 (1)由f(x)=2sinxcosx+2cos2x-1,得 f(x)=(2sinxcosx)+(2cos2x)-1)=sin2x+cos2x=2sin(2x+) 所以函数f(x)的最小正周期为π. 因为f(x)=2sin(2x+)在区间[0,]上为增函数,在区间[,]上为减函数, 又f(0)=1,f()=2,f()=-1,所以函数f(x)在区间[0,]上的最大值为2,最小值为-1. (Ⅱ)由(1)可知f(x)=2sin(2x+) 又因为f(x)=,所以sin(2x+)= 由x∈[,],得2x+∈[,] 从而cos(2x+)=-=-. 所以 cos2x=cos[(2x+)-]=cos(2x+)cos+sin(2x+)sin=.
复制答案
考点分析:
相关试题推荐
一个袋中有大小相同的标有1、2、3、4、5、6的6个小球,某人做如下游戏,每次从袋中拿一个球(拿后放回),记下标号.若拿出球的标号是3的倍数,则得1分,否则得-1分,则拿4次所得分数ξ的数学期望是    查看答案
对正整数n,设曲线y=xn(1-x)在x=2处的切线与y轴交点的纵坐标为an
(i)an=   
(ii)数列manfen5.com 满分网的前n项和Sn=    查看答案
在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为    查看答案
若焦点在x轴上的椭圆manfen5.com 满分网上有一点,使它与两焦点的连线互相垂直,则正数b的取值范围是    查看答案
计算manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.