(1)依题意,Sn+1-Sn=an+1=2Sn+4n,即Sn+1=3Sn+4n,设,则,从而可得bn+1=3bn,由此可求数列{bn}的通项公式;
(2)由①知Sn=4n+(a-4)×3n-1,从而可得数列的通项,作差,利用an+1≥an恒成立,即可求a的取值范围.
【解析】
(1)依题意,Sn+1-Sn=an+1=2Sn+4n,即Sn+1=3Sn+4n,
设,则
∴bn+1=3bn,
∵b1=S1-4=a-4
∴数列{bn}的通项公式为bn=(a-4)×3n-1,n∈N*.①(6分)
(2)由①知Sn=4n+(a-4)×3n-1,
于是,当n≥2时,an=Sn-Sn-1=4n+(a-4)×3n-1-[4n-1+(a-4)×3n-2]=3×4n-1+2(a-4)3n-2,
an+1-an=9×4n-1+4(a-4)×3n-2,
当n≥2时,an+1≥an等价于9×4n-1+4(a-4)×3n-2≥0
∴36×+4(a-4)≥0
∴a≥-5.
综上,所求的a的取值范围是[-9,+∞).(12分)