已知函数
在x=1处取得极值2.
(1)求函数f(x)的表达式;
(2)当m满足什么条件时,函数f(x)在区间(m,2m+1)上单调递增?
(3)若P(x
,y
)为
图象上任意一点,直线l与
的图象切于点P,求直线l的斜率k的取值范围.
考点分析:
相关试题推荐
在等比数列{a
n}中,a
n>0(n∈N
+),公比q∈(0,1),且a
3a
5+2a
4a
6+a
3a
9=100,又4是a
4与a
6的等比中项.
(Ⅰ)求数列{a
n}的通项公式;
(Ⅱ)设b
n=log
2a
n,求数列{|b
n|}的前n项和S
n.
查看答案
如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线 l 在y轴上的截距为m(m≠0),直线l交椭圆于A、B两个不同点(A、B与M不重合).
(Ⅰ)求椭圆的方程;
(Ⅱ)当MA⊥MB时,求m的值.
查看答案
如图,平行四边形ABCD和矩形ACEF所在的平面互相垂直,AB=1,AD=2,∠ADC=60°,AF=
.
(Ⅰ)求证:AC⊥BF;
(Ⅱ)求多面体ABCDEF的体积.
查看答案
现对某市工薪阶层关于“楼市限购政策”的态度进行调查,随机抽查了50人,他们月收入(单位:百元)的频数分布及对“楼市限购政策”赞成人数如下表:
月收入(单位百元) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 8 | 12 | 5 | 2 | 1 |
(Ⅰ)根据以上统计数据填写下面2×2列联表,并回答是否有99%的把握认为月收入以5500元为分界点对“楼市限购政策”的态度有差异?
| 月收入不低于55百元的人数 | 月收入低于55百元的人数 | 合计 |
赞成 | a= | b= | |
不赞成 | c= | d= | |
合计 | | | |
(Ⅱ)若从月收入在[55,65)的被调查对象中随机选取两人进行调查,求至少有一人不赞成“楼市限购政策”的概率.
(参考公式:K
2=
,其中n=a+b+c+d.)
参考值表:
P(k2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案
在△ABC中,角A、B、C所对的边分别为a、b、c,且
.
(Ⅰ)求
的值;
(Ⅱ)若
,求bc的最大值.
查看答案