已知数列{a
n},a
1=2a+1(a≠-1的常数),a
n=2a
n-1+n
2-4n+2(n≥2,n∈N
∗),数列{b
n}的首项,b
1=a,b
n=a
n+n
2(n≥2,n∈N
∗).
(1)证明:{b
n}从第2项起是以2为公比的等比数列并求{b
n}通项公式;
(2)设S
n为数列{b
n}的前n项和,且{S
n}是等比数列,求实数a的值;
(3)当a>0时,求数列{a
n}的最小项.
考点分析:
相关试题推荐
已知函数f(x)=
+ln
(1)求函数f(x)的定义域和极值;
(2)若函数f(x)在区间[a
2-5a,8-3a]上为增函数,求实数a的取值范围;
(3)函数f(x)的图象是否为中心对称图形?若是请指出对称中心,并证明;若不是,请说明理由.
查看答案
如图,已知直线l与抛物线x
2=4y相切于点P(2,1),且与x轴交于点A,定点B的坐标为(2,0).
(I)若动点M满足
,求点M的轨迹C;
(Ⅱ)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
查看答案
已知,如图:四边形ABCD为矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,
(1)求证:直线MN⊥直线AB;
(2)若平面PDC与平面ABCD所成的二面角大小为θ,能否确定θ使直线MN是异面直线AB与PC的公垂线,若能确定,求出θ的值,若不能确定,说明理由.
查看答案
某工厂在试验阶段大量生产一种零件.这种零件有A,B两项技术指标需要检测,设各项技术指标达标与否互不影响.若有且仅有一项技术指标达标的概率为
,至少一项技术指标达标的概率为
.按质量检验规定:两项技术指标都达标的零件为合格品.
(1)求一个零件经过检测为合格品的概率是多少?
(2)任意依次抽出5个零件进行检测,求其中至多3个零件是合格品的概率是多少?
(3)任意依次抽取该种零件4个,设ξ表示其中合格品的个数,求Eξ与Dξ.
查看答案
已知函数
的最小正周期为4π.
(1)求f(x)的单调递增区间;
(2)在△ABC中,角A,B,C的对边分别是a,b,c满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
查看答案