满分5 > 高中数学试题 >

已知椭圆的焦点坐标为F1(-1,0),F2(1,0),过F2垂直于长轴的直线交椭...

已知椭圆的焦点坐标为F1(-1,0),F2(1,0),过F2垂直于长轴的直线交椭圆于P、Q两点,且|PQ|=3.
(1)求椭圆的方程;
(2)过F2的直线l与椭圆交于不同的两点M、N,则△F1MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.
(1)设椭圆方程,由焦点坐标可得c=1,由|PQ|=3,可得=3,又a2-b2=1,由此可求椭圆方程; (2)设M(x1,y1),N(x2,y2),不妨y1>0,y2<0,设△F1MN的内切圆的径R,则△F1MN的周长=4a=8,(|MN|+|F1M|+|F1N|)R=4R,因此最大,R就最大.设直线l的方程为x=my+1,与椭圆方程联立,从而可表示△F1MN的面积,利用换元法,借助于导数,即可求得结论. 【解析】 (1)设椭圆方程为=1(a>b>0),由焦点坐标可得c=1…(1分) 由|PQ|=3,可得=3,…(2分) 又a2-b2=1,解得a=2,b=,…(3分) 故椭圆方程为=1…(4分) (2)设M(x1,y1),N(x2,y2),不妨y1>0,y2<0,设△F1MN的内切圆的径R, 则△F1MN的周长=4a=8,(|MN|+|F1M|+|F1N|)R=4R 因此最大,R就最大,…(6分) 由题知,直线l的斜率不为零,可设直线l的方程为x=my+1, 由得(3m2+4)y2+6my-9=0,…(8分) 得,, 则=,…(9分) 令t=,则t≥1, 则,…(10分) 令f(t)=3t+,则f′(t)=3-, 当t≥1时,f′(t)≥0,f(t)在[1,+∞)上单调递增,有f(t)≥f(1)=4,S△F1MN≤3, 即当t=1,m=0时,S△F1MN≤3, S△F1MN=4R,∴Rmax=,这时所求内切圆面积的最大值为π. 故直线l:x=1,△F1MN内切圆面积的最大值为π…(12分)
复制答案
考点分析:
相关试题推荐
一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:
(1)得60分的概率;
(2)所得分数ξ的分布列和数学期望.
查看答案
如图,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=manfen5.com 满分网AP=2,D是AP的中点,E,F,G分别为PC、PD、CB的中点,将△PCD沿CD折起,使得PD⊥平面ABCD.
manfen5.com 满分网
(1)求证:平面PCD⊥平面PAD;
(2)求二面角G-EF-D的大小;
(3)求三棱椎D-PAB的体积.
查看答案
已知等比数列{an}的前n项和为Sn,且满足Sn=3n+k.
(1)求k的值及数列{an}的通项公式;
(2)若数列{bn}满足manfen5.com 满分网=manfen5.com 满分网,求数列{bn}的前n项和Tn
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cosmanfen5.com 满分网manfen5.com 满分网=3.
(1)求△ABC的面积;
(2)若c=1,求a、sinB的值.
查看答案
下列四种说法中正确的是   
①“若am2<bm2,则a<b”的逆命题为真;
②线性回归方程对应的直线manfen5.com 满分网=manfen5.com 满分网x+manfen5.com 满分网一定经过其样本数据点 (x1,y1),(x2,y2),…,(xn,yn)中的一个点;
③若实数x,y∈[0,1],则满足:x2+y2>1的概率为manfen5.com 满分网
④用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3…(2n-1)(n∈N*)时,从“k”到“k+1”的证明,左边需增添的一个因式是2(2k+1). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.