满分5 > 高中数学试题 >

已知函数f(x)=ax+lnx,其中a为常数,设e为自然对数的底数. (1)当a...

已知函数f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.
(1)当a=-1时,求f(x)的最大值;
(2)若f(x)在区间(0,e]上的最大值为-3,求a的值;
(3)当a=-1时,试推断方程|f(x)|=manfen5.com 满分网是否有实数解.
(1)在定义域(0,+∞)内对函数f(x)求导,求其极大值,若是唯一极值点,则极大值即为最大值. (2)在定义域(0,+∞)内对函数f(x)求导,对a进行分类讨论并判断其单调性,根据f(x)在区间(0,e]上的单调性求其最大值,并判断其最大值是否为-3,若是就可求出相应的最大值. (3)根据(1)可求出|f(x)|的值域,通过求导可求出函数g(x)═的值域,通过比较上述两个函数的值域,就可判断出方程|f(x)|=是否有实数解. 【解析】 (1)易知f(x)定义域为(0,+∞), 当a=-1时,f(x)=-x+lnx,f′(x)=-1+,令f′(x)=0,得x=1. 当0<x<1时,f′(x)>0;当x>1时,f′(x)<0. ∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数. f(x)max=f(1)=-1. ∴函数f(x)在(0,+∞)上的最大值为-1. (2)∵f′(x)=a+,x∈(0,e],∈. ①若a≥,则f′(x)≥0,从而f(x)在(0,e]上增函数, ∴f(x)max=f(e)=ae+1≥0,不合题意. ②若a<,则由f′(x)>0>0,即0<x< 由f′(x)<0<0,即<x≤e. 从而f(x)在上增函数,在为减函数 ∴f(x)max=f=-1+ln 令-1+ln=-3,则ln=-2 ∴=e-2,即a=-e2.∵-e2<,∴a=-e2为所求. (3)由(1)知当a=-1时f(x)max=f(1)=-1, ∴|f(x)|≥1. 又令g(x)=,g′(x)=,令g′(x)=0,得x=e, 当0<x<e时,g′(x)>0,g(x)  在(0,e)单调递增; 当x>e时,g′(x)<0,g(x) 在(e,+∞)单调递减. ∴g(x)max=g(e)=<1,∴g(x)<1, ∴|f(x)|>g(x),即|f(x)|>. ∴方程|f(x)|=没有实数解.
复制答案
考点分析:
相关试题推荐
已知椭圆的焦点坐标为F1(-1,0),F2(1,0),过F2垂直于长轴的直线交椭圆于P、Q两点,且|PQ|=3.
(1)求椭圆的方程;
(2)过F2的直线l与椭圆交于不同的两点M、N,则△F1MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.
查看答案
一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:
(1)得60分的概率;
(2)所得分数ξ的分布列和数学期望.
查看答案
如图,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=manfen5.com 满分网AP=2,D是AP的中点,E,F,G分别为PC、PD、CB的中点,将△PCD沿CD折起,使得PD⊥平面ABCD.
manfen5.com 满分网
(1)求证:平面PCD⊥平面PAD;
(2)求二面角G-EF-D的大小;
(3)求三棱椎D-PAB的体积.
查看答案
已知等比数列{an}的前n项和为Sn,且满足Sn=3n+k.
(1)求k的值及数列{an}的通项公式;
(2)若数列{bn}满足manfen5.com 满分网=manfen5.com 满分网,求数列{bn}的前n项和Tn
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cosmanfen5.com 满分网manfen5.com 满分网=3.
(1)求△ABC的面积;
(2)若c=1,求a、sinB的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.