满分5 > 高中数学试题 >

已知在数列{an}中,a1=t,a2=t2(t>0且t≠1).是函数f(x)=a...

已知在数列{an}中,a1=t,a2=t2(t>0且t≠1).manfen5.com 满分网是函数f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一个极值点.
(1)证明数列{an+1-an}是等比数列,并求数列{an}的通项公式;
(2)记manfen5.com 满分网,当t=2时,数列{bn}的前n项和为Sn,求使Sn>2008的n的最小值;
(3)当t=2时,是否存在指数函数g(x),使得对于任意的正整数n有manfen5.com 满分网成立?若存在,求出满足条件的一个g(x);若不存在,请说明理由.
(1)由函数求导令,即.变形可得an+1-an=t(an-an-1)符合等比数列的定义,利用通项公式求解. (2)由(1)求得,再求得Sn=由Sn>2008,得,,当n≤1400时,,当n≥1005时,,取得n最小值 (3)由想到裂项相消法求和,由其结构不妨设g(k)=2k,运算验证即可. 【解析】 (1)f'(x)=3an-1x2-3[(t+1)an-an+1](n≥2). 由题意,即.(1分) ∴an+1-an=t(an-an-1)(n≥2) ∵t>0且t≠1,∴数列{an+1-an}是以t2-t为首项,t为公比的等比数列,(2分) ∴an+1-an=(t2-t)tn-1=(t-1)•tn, ∴a2-a1=(t-1)t, a3-a2=(t-1)•t2, an-an-1=(t-1)tn-1 以上各式两边分别相加得an-a1=(t-1)(t+t2+tn-1),∴an=tn(n≥2), 当n=1时,上式也成立,∴an=tn(5分) (2)当t=2时, ∴ =(7分) 由Sn>2008,得,,(8分) 当, 因此n的最小值为1005.(10分) (3)∵ 令g(k)=2k,则有: 则==(13分) 即函数g(k)=2x满足条件.
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,其左、右焦点分别为F1、F2,点P是椭圆上一点,且manfen5.com 满分网,|OP|=1(O为坐标原点).
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点manfen5.com 满分网且斜率为k的动直线l交
椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标,若不存在,说明理由.
查看答案
长沙市“两会”召开前,某政协委员针对自己提出的“环保提案”对某处的环境状况进行了实地调研.据测定,该处的污染指数与附近污染源的强度成正比,与到污染源的距离成反比,比例常数为k(k>0).现已知相距36km的A,B两家化工厂(污染源)的污染强度分别为正数a,b,它们连线上任意一点C处的污染指数y等于两化工厂对该处的污染指数之和.设AC=x(km).
(Ⅰ)试将y表示为x的函数;
(Ⅱ)若a=1时,y在x=6处取得最小值,试求b的值.
查看答案
如图,矩形ABCD中,AB=3,BC=4.E,F分别在线段BC和AD上,EF∥AB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.
manfen5.com 满分网
(Ⅰ)求证:NC∥平面MFD;
(Ⅱ)若EC=3,求证:ND⊥FC;
(Ⅲ)求四面体NFEC体积的最大值.
查看答案
现对某市工薪阶层关于“楼市限购政策”的态度进行调查,随机抽查了50人,他们月收入(单位:百元)的频数分布及对“楼市限购政策”赞成人数如下表:
月收入(单位百元)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数4812521
(Ⅰ)根据以上统计数据填写下面2×2列联表,并回答是否有99%的把握认为月收入以5500元为分界点对“楼市限购政策”的态度有差异?
月收入不低于55百元的人数月收入低于55百元的人数合计
赞成a=b=
不赞成c=d=
合计
(Ⅱ)若从月收入在[55,65)的被调查对象中随机选取两人进行调查,求至少有一人不赞成“楼市限购政策”的概率.
(参考公式:K2=manfen5.com 满分网,其中n=a+b+c+d.)
参考值表:
P(k2≥k0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c.已知manfen5.com 满分网manfen5.com 满分网,试判断△ABC的形状.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.