要证数列{an+an+1}为等差数列,只需证(an+1+an+2)-(an+an+1)=an+2-an=2d即可,而要证反之不成立,举反例an+an+1=0的常数列即可推翻.
【解析】
∵数列{an}为等差数列,设其公差为d,则
(an+1+an+2)-(an+an+1)=an+2-an=2d,d为与n无关的常数,
故数列{an+an+1}为等差数列.
若取,则an+an+1=0,显然,数列{an+an+1}为等差数列,但
数列{an}为摆动数列,故不是等差数列.
故数列{an}为等差数列”是“数列{an+an+1}为等差数列”的充分不必要条件.
故答案选A