满分5 > 高中数学试题 >

已知直线x-2y+2=0经过椭圆的左顶点A和上顶点D,椭圆C的右顶点为B,点S是...

已知直线x-2y+2=0经过椭圆manfen5.com 满分网的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AS,BS与直线manfen5.com 满分网分别交于M,N两点.
(1)求椭圆C的方程;
(2)求线段MN的长度的最小值;
(3)当线段MN的长度最小时,在椭圆C上是否存在这样的点T,使得△TSB的面积为manfen5.com 满分网?若存在,确定点T的个数,若不存在,说明理由.

manfen5.com 满分网
(1)因为直线过椭圆的左顶点与上顶点,故可解出直线与坐标轴的交点,即知椭圆的长半轴长与短半轴长,依定义写出椭圆的方程即可. (2)法一、引入直线AS的斜率k,用点斜式写出直线AS的方程,与l的方程联立求出点M的坐标,以及点S的坐标,又点B的坐标已知,故可解 出直线SB的方程,亦用参数k表示的方程,使其与直线l联立,求出点N的坐标,故线段MN的长度可以表示成直线AS的斜率k的函数,根据其形式选择单调性法或者基本不等式法求最值,本题适合用基本不等式求最值. 法二、根据图形构造出了可用基本不等式的形式来求最值. (3)在上一问的基础上求出参数k,则直线SB的方程已知,可求出线段AB的长度,若使面积为,只须点T到直线BS的距离为即可,由此问题转化为研究与直线SB平行且距离为的直线与椭圆的交点个数问题,下易证 【解析】 (1)由已知得,椭圆C的左顶点为A(-2,0), 上顶点为D(0,1),∴a=2,b=1 故椭圆C的方程为(4分) (2)依题意,直线AS的斜率k存在,且k>0,故可设直线AS的方程为y=k(x+2),从而,由得(1+4k2)x2+16k2x+16k2-4=0 设S(x1,y1),则得,从而 即,(6分) 又B(2,0)由得, ∴,(8分) 故 又k>0,∴当且仅当,即时等号成立. ∴时,线段MN的长度取最小值(10分) (2)另【解析】 设S(xs,yS),依题意,A,S,M三点共线,且所在直线斜率存在, 由kAM=kAS,可得同理可得:又 所以,=不仿设yM>0,yN<0当且仅当yM=-yN时取等号, 即时,线段MN的长度取最小值. (3)由(2)可知,当MN取最小值时, 此时BS的方程为,∴(11分) 要使椭圆C上存在点T,使得△TSB的面积等于,只须T到直线BS的距离等于, 所以T在平行于BS且与BS距离等于的直线l'上. 设直线l':x+y+t=0,则由,解得或. 又因为T为直线l'与椭圆C的交点,所以经检验得,此时点T有两个满足条件.(14分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x3+(1-a) x2-a(a+2)x+b(a,b∈R).
(I)若函数f(x)的图象过原点,且在原点处的切线斜率是-3,求a,b的值;
(Ⅱ)若函数f(x)在区间(-1,1)上不单调,求a的取值范围.
查看答案
如图,四棱锥P-ABCD的底面是边长为1的正方形,PA丄底面ABCD,AE丄PD于E,EF∥CD交PC于F,点M在AB上,且AM=EF.
(I)求证MF是异面直线AB与PC的公垂线;
(II)若PA=2AB,求二面角E-AB-D的正弦值.

manfen5.com 满分网 查看答案
已知数列{an}的前n项和Sn=2n2+2n,数列{bn}的前n项和Tn=2-bn
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)设cn=an2•bn,证明:当且仅当n≥3时,cn+1<cn
查看答案
袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球
(Ⅰ)试问:一共有多少种不同的结果?请列出所有可能的结果;
(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.
查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,manfen5.com 满分网
(Ⅰ)求cosC的值;
(Ⅱ)若manfen5.com 满分网,且a+b=9,求c的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.