满分5 > 高中数学试题 >

设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)...

设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)在直线2x+y-2=0上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在实数λ,使得数列manfen5.com 满分网为等差数列?若存在,求出λ的值;若不存在,则说明理由.
(Ⅲ)求证:manfen5.com 满分网
(Ⅰ)利用数列{an}的前n项Sn与an的关系通过相减的思想得到数列相邻项之间的关系式是解决本题的关键,证明出该数列是特殊数列,进而确定出其通项公式; (Ⅱ)解法一:确定出数列{an}的前n项和为Sn的表达式是解决本题的关键,数列为等差数列首先保证其前3项满足等差数列的关系,得出关于λ的方程,从而确定出λ的值; 解法二:先确定出数列{an}的前n项和为Sn的表达式,利用数列为等差数列的通项公式的特征寻找关于λ的方程,通过求解方程确定出λ的值; (Ⅲ)对该和式的通项进行转化是解决本题的关键,用到了裂项求和的思想,求出该和式,利用函数的单调性完成该不等式的证明. 【解析】 (Ⅰ)由题意可得:2an+1+Sn-2=0.①n≥2时,2an+Sn-1-2=0.② ①─②得, ∵. ∴{an}是首项为1,公比为的等比数列,∴. (Ⅱ)解法一:∵. 若为等差数列, 则成等差数列, 2, 得λ=2. 又λ=2时,,显然{2n+2}成等差数列, 故存在实数λ=2,使得数列成等差数列. 解法二:∵. ∴. 欲使成等差数列,只须λ-2=0即λ=2便可. 故存在实数λ=2,使得数列成等差数列. (Ⅲ)证明:∵ = ∴ =… == 又函数=在x∈[1,+∞)上为增函数, ∴, ∴,.
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网过点(0,1),且离心率为manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)A,B为椭圆C的左右顶点,直线manfen5.com 满分网与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,|DE|•|DF|恒为定值.
查看答案
已知x=1是函数f(x)=(ax-2)ex的一个极值点.(a∈R)
(Ⅰ)求a的值;
(Ⅱ)当x1,x2∈[0,2]时,证明:f(x1)-f(x2)≤e.
查看答案
如图,已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,AB=1,AD=2,∠ADC=60°,AF=manfen5.com 满分网
(1)求证:AC⊥BF;
(2)求二面角F-BD-A的余弦值;
(3)求点A到平面FBD的距离.

manfen5.com 满分网 查看答案
某班同学利用寒假在5个居民小区内选择两个小区逐户进行一次“低碳生活习惯”的调查,以计算每户的碳月排放量.若月排放量符合低碳标准的称为“低碳族”,否则称为“非低碳族”.若小区内有至少75%的住户属于“低碳族”,则称这个小区为“低碳小区”,否则称为“非低碳小区”.已知备选的5个居民小区中有三个非低碳小区,两个低碳小区.manfen5.com 满分网
(Ⅰ)求所选的两个小区恰有一个为“非低碳小区”的概率;
(Ⅱ)假定选择的“非低碳小区”为小区A,调查显示其“低碳族”的比例为manfen5.com 满分网,数据如图1所示,经过同学们的大力宣传,三个月后,又进行了一次调查,数据如图2所示,问这时小区A是否达到“低碳小区”的标准?
查看答案
已知函数f(x)=(sin2x+cos2x)2-2sin22x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若函数y=g(x)的图象是由y=f(x)的图象向右平移manfen5.com 满分网个单位长度得到的,当x∈[0,manfen5.com 满分网]时,求y=g(x)的最大值和最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.