根据题意,数列{log2(an-1)}(n∈N*)为等差数列,设其公差为d,则log2(an-1)-log2(an-1-1)=d,由对数的运算性质可得,=2d,又由a1=3,a2=5,可得=2,则可得{an-1}是以a1-1=2为首项,公比为2的等比数列,进而可得an=2n+1,结合题意有an-an-1=2n-2n-1=2n-1,代入可得答案.
【解析】
数列{log2(an-1)}(n∈N*)为等差数列,
设其公差为d,则log2(an-1)-log2(an-1-1)=d,
即=2d,又由a1=3,a2=5,
则d=1,即=2,
{an-1}是以a1-1=2为首项,公比为2的等比数列,
进而可得,an-1=2n,则an=2n+1,
故an-an-1=2n-2n-1=2n-1,
则(++…+)=(++…+)=1,
故选C.