满分5 > 高中数学试题 >

设a为实数,函数f(x)=ex-2x+2a,x∈R. (1)求f(x)的单调区间...

设a为实数,函数f(x)=ex-2x+2a,x∈R.
(1)求f(x)的单调区间及极值;
(2)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.
(1)由f(x)=ex-2x+2a,x∈R,知f′(x)=ex-2,x∈R.令f′(x)=0,得x=ln2.列表讨论能求出f(x)的单调区间区间及极值. (2)设g(x)=ex-x2+2ax-1,x∈R,于是g′(x)=ex-2x+2a,x∈R.由(1)知当a>ln2-1时,g′(x)最小值为g′(ln2)=2(1-ln2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.由此能够证明ex>x2-2ax+1. (1)【解析】 ∵f(x)=ex-2x+2a,x∈R, ∴f′(x)=ex-2,x∈R. 令f′(x)=0,得x=ln2. 于是当x变化时,f′(x),f(x)的变化情况如下表: x (-∞,ln2) ln2 (ln2,+∞) f′(x) - + f(x) 单调递减 2(1-ln2+a) 单调递增 故f(x)的单调递减区间是(-∞,ln2), 单调递增区间是(ln2,+∞), f(x)在x=ln2处取得极小值, 极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a),无极大值. (2)证明:设g(x)=ex-x2+2ax-1,x∈R, 于是g′(x)=ex-2x+2a,x∈R. 由(1)知当a>ln2-1时, g′(x)最小值为g′(ln2)=2(1-ln2+a)>0. 于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增. 于是当a>ln2-1时,对任意x∈(0,+∞),都有g(x)>g(0). 而g(0)=0,从而对任意x∈(0,+∞),g(x)>0. 即ex-x2+2ax-1>0, 故ex>x2-2ax+1.
复制答案
考点分析:
相关试题推荐
如图,△ABC中,sinmanfen5.com 满分网=manfen5.com 满分网,AB=2,点D在线段AC上,且AD=2DC,BD=manfen5.com 满分网.(Ⅰ)求:BC的长;(Ⅱ)求△DBC的面积.

manfen5.com 满分网 查看答案
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,点E、G分别是CD、PC的中点,点F在PD上,且PF:FD=2:1.
(Ⅰ)证明:EA⊥PB;
(Ⅱ)证明:BG∥面AFC.

manfen5.com 满分网 查看答案
某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.
(Ⅰ)甲班10名同学成绩标准差______乙班10名同学成绩标准差(填“>”,“<”);
(Ⅱ)从甲班4名及格同学中抽取两人,从乙班2名80分以下的同学中取一人,求三人平均分不及格的概率.

manfen5.com 满分网 查看答案
manfen5.com 满分网已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球体积为    查看答案
对于命题:如果O是线段AB上一点,则manfen5.com 满分网;将它类比到平面 的情形是:若O是△ABC内一点,有manfen5.com 满分网;将它类比到空间的情形应该是:若O是四面体ABCD内一点,则有    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.