满分5 > 高中数学试题 >

设椭圆C:的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x...

设椭圆C:manfen5.com 满分网的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且manfen5.com 满分网
(1)求椭圆C的离心率;
(2)若过A、Q、F2三点的圆恰好与直线l:manfen5.com 满分网相切,求椭圆C的方程;
(3)在(2)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.


manfen5.com 满分网
(1)设Q(x,0),由F2(c,0),A(0,b)结合向量条件及向量运算得出关于a,c的等式,从而求得椭圆的离心率即可; (2)由(1)知a,c的一个方程,再利用△AQF的外接圆得出另一个方程,解这两个方程组成的方程组即可求得所求椭圆方程; (3)由(Ⅱ)知直线l:y=k(x-1),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用弦长公式即可求得满足题意的点P且m的取值范围. 【解析】 (1)设Q(x,0),由F2(c,0),A(0,b) 知 ∵,∴, 由于即F1为F2Q中点. 故∴b2=3c2=a2-c2, 故椭圆的离心率,(3分) (2)由(1)知,得于是F2(a,0)Q, △AQF的外接圆圆心为(-a,0),半径r=|FQ|=a 所以,解得a=2,∴c=1,b=, 所求椭圆方程为,(6分) (3)由(Ⅱ)知F2(1,0)l:y=k(x-1) 代入得(3+4k2)x2-8k2x+4k2-12=0 设M(x1,y1),N(x2,y2) 则,y1+y2=k(x1+x2-2),(8分) =(x1+x2-2m,y1+y2) 由于菱形对角线垂直,则 故k(y1+y2)+x1+x2-2m=0 则k2(x1+x2-2)+x1+x2-2m=0k2(10分) 由已知条件知k≠0且k∈R∴∴ 故存在满足题意的点P且m的取值范围是.(12分)
复制答案
考点分析:
相关试题推荐
设函数manfen5.com 满分网
(1)求函数y=f(x)的单调区间;
(2)求y=f(x)在[-1,2]上的最小值;
(3)当x∈(1,+∞)时,用数学归纳法证明:∀n∈N*,manfen5.com 满分网
查看答案
设数列{an}是公比大小于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(I)求数列{an}的通项公式an
(II)设cn=log2an+1,数列{cncn+2}的前n项和为Tn,是否存在正整数m,使得Tnmanfen5.com 满分网对于n∈N*恒成立?若存在,求出m的最小值;若不存在,说明理由.
查看答案
如图,D、E分别是正三棱柱ABC-A1B1C1的棱AA1、BB1的中点,且棱AA1=8,AB=4.
(Ⅰ)求证:A1E∥平面BDC1
(Ⅱ)在棱AA1上是否存在一点M,使二面角M-BC1-B1的大小为60°,若存在,求AM的长;若不存在,说明理由.

manfen5.com 满分网 查看答案
某产品按行业生产标准分成8个等级,等级系数ξ依次为1,2,…,8,产品的等级系数越大表明产品的质量越好,现从某厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如图:
(I)该行业规定产品的等级系数ξ≥7的为一等品,等级系数5≤ξ<7的为二等品,等级系数3≤ξ<5的为三等品,试分别估计该厂生产的产品的一等品率、二等品率和三等品率;
(II)已知该厂生产一件该产品的利润y(单位:元)与产品的等级系数ξ的关系式为:y=manfen5.com 满分网,从该厂生产的商品中任取一件,其利润记为X,用这个样本的频率分布估计总体分布,将频率视为概率,求随机变量X的分布列和数学期望.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(I)求函数f(x)的周期及单调递增区间;
(II)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知点manfen5.com 满分网经过函数f(x)的图象,b,a,c成等差数列,且manfen5.com 满分网,求a的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.