(I)由Sn+2n=2an得Sn=2an-2n,再写一式,两式相减,即可证数列{an+2}是以a1+2为首项,以2为公比的等比数列,从而可求数列{an}的通项公式an;
(Ⅱ)由bn=log2(an+2)=log22n+1=n+1,则==,由此可证结论.
证明:(I)由Sn+2n=2an得 Sn=2an-2n
当n∈N*时,Sn=2an-2n,①
当n=1 时,S1=2a1-2,则a1=2,
则当n≥2,n∈N*时,Sn-1=2an-1-2(n-1).②
①-②,得an=2an-2an-1-2,即an=2an-1+2,∴an+2=2(an-1+2)
∴数列{an+2}是以a1+2为首项,以2为公比的等比数列.
∴an+2=4•2n-1,
∴an=2n+1-2.
(Ⅱ)由bn=log2(an+2)=log22n+1=n+1,
∴==
∴.