因为AE是△ABC的外接圆直径,所以∠ABE=90°,根据∠BAE+∠E=90°,∠ADC=90°,可知∠E=∠ACB,所以∠BAE=∠CAD.解直角三角形ABE即可求出AE.
证明:∵AE是△ABC的外接圆直径,
∴∠ABE=90°.
∴∠BAE+∠E=90°.
∵AD是△ABC的高,
∴∠ADC=90°.
∴∠CAD+∠ACB=90°.
∵∠E=∠ACB,
∴∠BAE=∠CAD.
连接BE,由于∠BEA=∠ACB,且三角形ABE是直角三角形.
sin∠BEA=sin∠ACB=.
故⊙O的直径AE===.
故答案为:∠CAD,.