已知函数
.
(Ⅰ)设{an}是正数组成的数列,前n项和为Sn,其中a1=3.若点(a
n,a
n+12-2a
n+1)(n∈N
*)在函数y=f′(x)的图象上,求证:点(n,Sn)也在y=f′(x)的图象上;
(Ⅱ)求函数f(x)在区间(a-1,a)内的极值.
考点分析:
相关试题推荐
已知椭圆
的离心率
,且过点
.
(1)求椭圆C的标准方程;
(2)垂直于坐标轴的直线l与椭圆C相交于A、B两点,若以AB为直径的圆D经过坐标原点.证明:圆D的半径为定值.
查看答案
如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1.
(1)求证:CN∥平面AMD;
(2)求该几何体的体积.
查看答案
已知函数,f(x)=
,数列{a
n}满足a
1=1,a
n+1=f(a
n)(n∈N
*)
(I)求证数列{
}是等差数列,并求数列{a
n}的通项公式;
(II)记S
n=a
1a
2+a
2a
3+..a
na
n+1,求S
n.
查看答案
甲乙两个学校高三年级分别为1100人,1000人,为了统计两个学校在地区二模考试的数学科目成绩,采用分层抽样抽取了105名学生的成绩,并作出了部分频率分布表如下:(规定考试成绩在[120,150]内为优秀)
甲校:
分组 | [70,80) | [80,90) | [90,100) | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
频数 | 2 | 3 | 10 | 15 | 15 | x | 3 | 1 |
乙校:
分组 | [70,80) | [80,90) | [90,100) | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
频数 | 1 | 2 | 9 | 8 | 10 | 10 | y | 3 |
(1)计算x,y的值,并分别估计两上学校数学成绩的优秀率;
(2)由以上统计数据填写下面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
附:
P(k2≥k) | 0.10 | 0.025 | 0.010 |
k | 2.706 | 5.024 | 6.635 |
查看答案
已知函数
.
(Ⅰ) 求函数f(x)的单调递增区间;
(Ⅱ)已知△ABC中,角A,B,C所对的边长分别为a,b,c,若f(A)=0,
,求△ABC的面积S.
查看答案